• Title/Summary/Keyword: ion plating

Search Result 321, Processing Time 0.026 seconds

A STUDY ON WEAR AND CORROSION RESISTANCE OF CrN$_{x}$ FILMS BY CATHODIC ARC ION PLATING PROCESS

  • Han, Jeon-G.;Kim, Hyung-J.;Kim, Sang-S.
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.545-548
    • /
    • 1996
  • $CrN_x$ films were deposited on SKD61 and S45C by cathodic arc ion plating process. In this study, the microstructure, microhardness, a hesion, wear and corrosion properties of the CrNx films were studied for various nitrogen partial pressures and the results were compared with those from the electroplated hard Cr. The crystal structure of the films was characterized by X-ray diffraction. Wear tests were performed under no lubricant condition at atmosphere by ball-on-disc type tribotester. Corrosion resistance of the films were studied by electrochemical corrosion test, measuring current demsity-potential curves. The results indicated that the $CrN_x$ films formed using ion plation method showed higer hardness and lower current density, friction coefficient than electroplated hard Cr. Consequently, the application of the CrNx coationgs by ion plating which is free of environmental pollution, is expected to improve lifetime of components in industrial practice.

  • PDF

The Effect of Aluminum Element on the Surface Properties of CrAlN Coating Film Deposited via Arc Ion Plating ( Arc Ion Plating으로 증착된 CrAlN 코팅막의 표면 특성에 미치는 Al 원소의 영향 )

  • Jae-Un Kim;Byeong-Seok Lim;Young-Shin Yun;Byung-Woo Ahn;Han-Cheol Choe
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.1
    • /
    • pp.14-21
    • /
    • 2024
  • For this study, CrAlN multilayer coatings were deposited on SKD61 substrates using a multi-arc ion plating technique. The structural characteristics of the CrAlN multilayer coatings were evaluated using X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). Additionally, the adhesion of the coatings was assessed through scratch testing, and the mechanical strength was evaluated using nanoindentation and tribometric tests for frictional properties. The results show that the CrAlN multilayer coatings possess a uniform and dense structure with excellent mechanical strength. Hardness measurements indicated that the CrAlN coatings have high hardness values, and both the coating adhesion and wear resistance were found to be improved compared to CrN. The addition of aluminum is anticipated to contribute to enhanced durability and wear resistance.

TiN films by the HCD Ion plating (HCD법 이온플레이팅에 의한 TiN 박막제작)

  • Seo, Y.W.;Cho, S.M.;Kim, M.J.;Whang, K.W.
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.335-337
    • /
    • 1989
  • The Charcteristics of the HCD ion plating system for TiN coating was Investigated. 1-V curvet of the HCD ( hollow cathode discharge ), radiation temperatures of the Ta tube and the Ti pool and the electron density and the temperature of the generated plasma are shown. The preferred orientation and the micro-hardness of coatings performed by HCD process are studied.

  • PDF

터빈 블레이드 재료 표면피복을 위해 제작한 Ion plating 장치 특성

  • 이민구;강희수;이원종;김정수;김홍회
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.777-783
    • /
    • 1995
  • 원전 steam turbine blade 재료로 사용 중인 stellite 6B 및 400계열 martensitic stainless강의 침식 저항성을 향상시키기 위해 reactive magnetron hot cathode sputter ion plating법을 이용하여 TiN을 코팅하였다. 먼저 hot cathode triode system에 의한 전류-전압 특성을 분석하였고, 증착된 TiN 박막의 상확인 및 우선 방위 변화, 그리고 불순물에 대한 substrate bias의 영향을 확인하였다. 또한 mass spectrometer를 이용하여 반응 챔버내에 존재하는 성분들을 정상적으로 분석하였다.

  • PDF

A Study on the TiC Coating Using Hollow Cathode Discharge Ion Plating (HCD이온플레이팅 방법을 이용한 zzTiC코팅에 관한 연구)

  • 김인철;서용운;황기웅
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.8
    • /
    • pp.875-882
    • /
    • 1992
  • Titanium carbide(TiC) films, known as having excellent characteristics of resistance to wear and corrosion, were deposited on SUS-304 sheets using HCD(Hollow Cathode Discharge) reactive ion plating with acetylene gas as the reactant gas. The characteristics of TiC films were examined by X-ray diffraction, micro-Vickers hardness tester, ${\alpha}$-step, SEM(Scanning Electron Spectroscopy), ESCA(Electron Spectroscopy for Chemical Analysis), and AES(Auger Electron Spectroscopy) and the results were discussed with regard to the changes of various deposition conditions(bias voltage, acetylene flow rate, temperature).

Influence of negative bias voltage on the microstructure of CrN films deposited by arc ion plating (Negative bias voltage effect에 따른 CrN 박막의 미세구조에 대한 연구)

  • Sin, Jeong-Ho;Kim, Kwang-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.159-160
    • /
    • 2009
  • AIP(arc ion plating)방법으로 CrN 코팅막을 합성하였다. 고분해능 SEM과 AFM 분석들로부터 negative bias voltage에 따른 미세구조의 영향을 나타내었다. negative bias voltage의 증가에 따라 columnar microstructure가 amorphous microstructure로 변화하였다. bias voltage effect에 의해 CrN 코팅막내 입자의 크기가 미세해지고 나노 복합체를 잘 형성하였다.

  • PDF

A Newly Developed Non-Cyanide Electroless Gold Plating Method Using Thiomalic Acid as a Complexing Agent and 2-Aminoethanethiol as a Reducing Agent

  • Han, Jae-Ho;Lee, Jae-Bong;Van Phuong, Nguyen;Kim, Dong-Hyun
    • Corrosion Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.89-99
    • /
    • 2022
  • A versatile method for performing non-cyanide electroless gold plating using thiomalic acid (TMA) as a complexing agent and 2-aminoethanethiol (AET) as a reducing agent was investigated. It was found that TMA was an excellent complexing agent for gold. It can be used in electroless gold plating baths at a neutral pH with a high solution stability, makes it a potential candidate to replace conventional toxic cyanide complex. It was found that one gold atomic ion could bind to two TMA molecules to form the [2TMA-Au+] complex in a solution. AET can be used as a reducing agent in electroless gold plating solutions. The highest current density was obtained at electrode rotation rate of 250 to 500 rpm based on anodic and cathodic polarization curves with the mixed potential theory. Increasing AET concentration, pH, and temperature significantly increased the anodic polarization current density and shifted the plating potential toward a more negative value. The optimal gold ion concentration to obtain the highest current density was 0.01 M. The cathodic current was higher at a lower pH and a higher temperature. The current density was inversely proportional to TMA concentration.

Recovery of Tin from Waste Tin Plating Solution by Ion Exchange Resin (주석도금폐액으로부터 이온교환수지를 이용한 주석 회수)

  • Shin, Gi-Wung;Kang, Yong-Ho;Ahn, Jae-Woo;Hyeon, Seung-Gyun
    • Resources Recycling
    • /
    • v.24 no.3
    • /
    • pp.51-58
    • /
    • 2015
  • In order to recover tin from the waste tin plating solution, we used the ion exchange method using three types of ion exchange resins. The ion exchange resin with tertiary functional group(Lewatit TP 272) has not adsorption ratio of tin. The ion exchange resin with iminodiacetic functional group(Lewatit TP 207) has high adsorption ratio of tin, but impurity content in the recovered tin solution was relatively high. Whereas, in case of the ion exchange resin with functional group of ethylhexyl-phosphate(Lewatit VP OC 1026), adsorption ratio of tin was less than that of Lewatit TP 207. However, it was possible to remove impurities in the recovered tin solution by controlling the pH of the solution. High purity tin solution can be recovered by removing the organic materials with water washing process.

Effect of Current Density on Nickel Surface Treatment Process (니켈 표면처리공정에서 전류밀도 효과분석)

  • Kim, Yong-Woon;Joeng, Koo-Hyung;Hong, In-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.228-235
    • /
    • 2008
  • Nickel plating thickness increased with the electric current density, and the augmentation was more thick in $6{\sim}10A/dm^2$ than low current. Hull-cell analysis was tested to evaluate the current density. Optimum thickness was obtained at a temperature of $60^{\circ}C$, and the pH fluctuation of 3.5~4.0. Over the Nickel ion concentration of 300 g/L, plating thickness increased with the current density. The rate of decrease in nickel ion concentration was increased with the current density. The quantity of plating electro-deposition was increased at the anode surface, which was correlated with the increase of plating thickness. The plating thickness was increased because of the quick plating speed. However, the condition of the plating surface becomes irregular and the minuteness of nickel plating layer was reduced with the plating rate. After the corrosion test of 25 h, it was resulted in that maintaining low electric current density is desirable for the excellent corrosion resistance in lustered nickel plating. According to the program simulation, the thickness of diffusion layer was increased and the concentration of anode surface was lowered for the higher current densities. The concentration profile showed the regular distribution at low electric current density. The field plating process was controlled by the electric current density and the plating thickness instead of plating time for the productivity. The surface physical property of plating structure or corrosion resistance was excellent in the case of low electric current density.

The effect of reactive gases on the propertise of TiCN layer synthesized by Arc Ion plating process (Arc Ion Plating 방식에 의한 TiCN 증착시 반응가스가 코팅층에 미치는 영향)

  • Seo, Chang-Min;Kim, Chang-Geun;;Yu, Im-Jun
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.56-68
    • /
    • 1997
  • This work was intended to study the effect of a partial pressure ratio and a total pressure of reactive gases on the properties of TiC$_{x}$N$_{1-x}$ . coated layer. In this regard, various TiC$_{x}$N$_{1-x}$ coatings were synthesized with C2112 and N2 Mixture gas of different compositions by Arc Ion Plating process which has been highlighted for an industrial purpose. It was revealed from colors and X-ray diffraction patterns that the concentration of carbon of a TiC$_{x}$N$_{1-x}$ coating increases with a partial pressure ratio (PC$_{2}$H$_{2}$/PN$_{2}$) as well as a total pressure Of $C_{2}$H$_{2}$ and N$_{2}$ mixture gas. Accordingly, the hardness of TiC$_{x}$N$_{1-x}$ coated layer increased but the adhesion to the substrate of SKH 51 was degraded. On the other hand, the deposition rate was independent of a partial pressure ratio and a total pressure of mixture gas. It was found that a uniform gas distribution is critical for an industrial application since the composition of a coating depends strongly on the location of a substrate inside of the furnace. As a result of milling tests with different TiC$_{x}$N$_{1-x}$ coated end mills, the one which has a low carbon concentration was better than others studied in this work.d in this work.

  • PDF