• 제목/요약/키워드: ion exchange capacity

검색결과 390건 처리시간 0.023초

전자선 가속기에 의해 방사선 처리한 양이온교환막을 이용한 전해-전기투석에 의한 HIx용액으로부터 HI의 농축 (Electro-electrodialysis Using the Radiation-treated Cation Exchange Membrane by Accelerated Electron Radiation to Concentrate HI from HIx Solution)

  • 황갑진;김정근;이상호;최호상
    • 멤브레인
    • /
    • 제17권4호
    • /
    • pp.338-344
    • /
    • 2007
  • HI몰랄리티가 9.5 $mol/kg-H_2O$인 HI의 전해-전기투석을 시판의 양이온교환막(CMB)을 이용하여 요오드의 존재하에 실험을 진행하였다. 수소이온 투과의 선택성을 증가시키기 위해, 막은 전자선 가속기를 이용하여 방사선 처리하였다. 방사선 처리한 막의 막특성(막 저항, 이온교환용량, 함수율)을 측정하였다. 각각의 방사선량에서 처리한 막의 2 $mol/dm^3$의 KCl 용액에서 막저항, 이온교환용량과 함수율은 처리하지 않은 막과 거의 동등의 값을 가졌다. HI몰랄리티가 9.5 $mol/kg-H_2O$인 HI의 전해-전투기투석을 $75^{\circ}C$, 9.6 $A/dm^2$에서 진행하였다. 전자선 가속기에 의해 방사선 처리한 양이온교환막은 처리하지 않은 막과 비교하여 고분자의 가교구조와 함께 수소이온투과의 높은 선택성을 가졌다.

Biosorption and Elution of Lead by Undaria pinnatifida

  • Suh, Jung-Ho;Suh, Myung-Gyo;Lee, Yong-Hee;Lee, Kook-Eui;Kim, Bong-Seob
    • 한국환경보건학회:학술대회논문집
    • /
    • 한국환경보건학회 2003년도 Challenges and Achievements in Environmental Health
    • /
    • pp.111-115
    • /
    • 2003
  • Biosorption of lead by marine algae, Undaria pinnatifida, was examined. The biosorption capacity of lead by U. pinnatifida was above 30% of its own weight and proportional to the initial lead concentration. However, the opposite result was shown in different initial weight of biomass. The mechanism of biosorption was accorded to the ion exchange process.

  • PDF

N-alkylammonium법에 의한 Mica형 층상 규산 알루미늄의 양이온 전하 밀도의 측정 (Determination of Cation Charge Density in Mica-type Layered Aluminosilicates by N-alkylammonium Method)

  • 최진호;박중철;김창은;이창교
    • 한국세라믹학회지
    • /
    • 제22권4호
    • /
    • pp.3-8
    • /
    • 1985
  • The layer charge densities and interlayer C. E. C(cation exchange capacity) of ten mica-type aluminosilicates from Yong-il Pohang-prefacture were determined by n-alkylammonium method which is based on the mo-nolayer-doubelelayer structural transition of ni-alkylammonium ion in interlayer space of the layered silcates. The upper and lower limits of layer charge and interlyer C, E, C estimated were about 0.25~0.36 eq/(Si, $Al)_4$ O10 and 69~99meq/100g, respectively.

  • PDF

Development and Applications of Membrane Technology in Korea

  • Noh, S.H.
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1995년도 추계 총회 및 학술발표회
    • /
    • pp.74-79
    • /
    • 1995
  • In the last 10 years, membrane science and technology in Korea have grown fast in terms of basic research and process applications. Even the first large commercial membrane plant in Korea was an ion-exchange membrane process built in 1975 for the production of table salt with an annual capacity of 150,000 tons of salt, membrane processes could not draw general interests from industry not until 1987 when a reverse osmosis plant for the production of process water with a capacity of 10,000 m$^3$/day was built by Kugdong Petroleum Co. Today, the production of water by RO over the capacity of 140,000 m$^3$/day is in operation or under construction in Korea. Consumption of ultra pure water increases sharply in recent years mainly due to the rapid expansion of semiconductor industry and the introduction of ultra high pressure boilers for power plants.

  • PDF

전기투석과 이온교환수지를 이용한 스테인레스 산업의 산세폐수 내 질산성 질소의 제거 (Removal of Nitrate-Nitrogen in Pickling Acid Wastewater from Stainless Steel Industry Using Electrodialysis and Ion Exchange Resin)

  • 윤영기;박연진;오상화;신원식;최상준;류승기
    • 한국환경과학회지
    • /
    • 제18권6호
    • /
    • pp.645-654
    • /
    • 2009
  • Lab-scale Electrodialysis(ED) system with different membranes combined with before or after pyroma process were carried out to remove nitrate from two pickling acid wastewater containing high concentrations of $NO_3\;^-$(${\approx}$150,000 mg/L) and F($({\approx}$ 160,000 mg/L) and some heavy metals(Fe, Ti, and Cr). The ED system before Pyroma process(Sample A) was not successful in $NO_3\;^-$ removal due to cation membrane fouling by the heavy metals, whereas, in the ED system after Pyroma process(Sample B), about 98% of nitrate was removed because of relatively low $NO_3\;^-$ concentration (about 30,000 mg/L) and no heavy metals. Mono-selective membranes(CIMS/ACS) in ED system have no selectivity for nitrate compared to divalent-selective membranes(CMX/AMX). The operation time for nitrate removal time decreased with increasing the applied voltage from 10V to 15V with no difference in the nitrate removal rate between both voltages. Nitrate adsorption of a strong-base anion exchange resin of $Cl\;^-$ type was also conducted. The Freundlich model($R^2$ > 0.996) was fitted better than Langmuir mode($R^2$ > 0.984) to the adsorption data. The maximum adsorption capacity ($Q^0$) was 492 mg/g for Sample A and 111 mg/g for Sample B due to the difference in initial nitrate concentrations between the two wastewater samples. In the regeneration of ion exchange resins, the nitrate removal rate in the pickling acid wastewater decreased as the adsorption step was repeated because certain amount of adsorbed $NO_3\;^-$ remained in the resins in spite of several desorption steps for regeneration. In conclusion, the optimum system configuration to treat pickling acid wastewater from stainless-steel industry is the multi-processes of the Pyroma-Electrodialysis-Ion exchange.

Separation of Lithium Isotopes by Tetraazamacrocycles Tethered to Merrifield Peptide Resin

  • Jeon, Youn-Seok;Jang, Nak-Han;Kang, Byung-Moo;Jeon, Young-Shin;Kim, Chang-Suk;Choi, Ki-Young;Ryu, Hai-Il
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권3호
    • /
    • pp.451-456
    • /
    • 2007
  • Tetraazamacrocyclic ion exchangers tethered to Merrifield peptide resin (DTDM, TTTM) were prepared and the ion exchange capacity of these was characterized. The isotope separation of lithium was determined using breakthrough method of column chromatography. The isotope separation coefficient was strongly dependent on the ligand structure by Glueckauf's theory. We found that the isotope separation coefficients were increased as the values of distribution coefficients were increased. In this experiment the lighter isotope, 6Li was enriched in the resin phase, while the heavier isotope, 7Li in the solution phase. The ion radius of lighter isotope, 6Li was shorter than the heavier isotope, 7Li. The hydration number of lithium ion with the same charge became small as mass number was decreased. Because 6Li was more strongly retained in the resin than 7Li, the isotopes of lithium were separated with subsequent enrichment in the resin phase.

테트라아자 거대고리화합물(TDM, TPM)을 이용한 마그네슘동위원소의 분리에 관한 연구 (The Separation of Magnesium Isotopes by Tetraazamacrocycles Tethered to Merrifield Peptide Resin(TDM, TPM))

  • 전윤석;류해일
    • 한국산학기술학회논문지
    • /
    • 제12권10호
    • /
    • pp.4696-4703
    • /
    • 2011
  • 본 연구에서는 메리필드펩타이드 수지가 치환된 테트라아자거대고리 화합물인 1,4,8,11-tetraazacyclotetradecane bonded Merrifield peptide resin(TDM)과 1,4,8,12-tetraazacyclopentadecane bonded Merrifield peptide resin(TPM)을 합성 하였다. 합성된 이온교환수지의 이온교환용량을 측정하였고, 또한 여러 농도의 염화암모늄용액에서 마그네슘이온의 분포계수를 측정하였다. 새롭게 합성한 테트라아자거대고리 화합물(TDM, TPM)을 가지고 컬럼크로마토그래피법을 이용하여 마그네슘 동위원소를 분리하고 그 효용성을 논의하였다.

술폰화 반응에 의한 High impact polystyrene(HIPS) 양이온교환막의 제조 및 특성 (Preparation and Properties of Sufonated High Impact Polystyrene(HIPS) Cation Exchange Membrane Via Sulfonation)

  • 김용태;곽노석;이철호;진창수;황택성
    • Korean Chemical Engineering Research
    • /
    • 제49권2호
    • /
    • pp.211-217
    • /
    • 2011
  • 본 연구는 high impact polystyrene (HIPS)의 가교 및 술폰화시간을 달리하여 이온교환막을 제조하였다. 술폰화 HIPS(SHIPS) 이온교환막의 술폰화도는 술폰화시간이 증가함에 따라 증가하였고, 가교시간이 증가함에 따라 감소하였으며 이때 최대 술폰화도는 66%였다. 또한, SHIPS 이온교환막의 이온교환용량과 함수율은 가교율이 증가할수록 감소하였고 술폰화시간이 증가할수록 우수한 성능을 나타냈으며 가장 우수한 함수율과 이온교환용량은 35.2%와 1.55 meq/g이였다. SHIPS 이온교환막의 전기저항 및 이온전도도는 술폰화시간이 증가할수록 우수한 성능을 나타냈으며 가장 우수한 값은 각각 $0.4\Omega{\cdot}cm^{2}$와 0.1 S/cm으로 나타났으며 Nafion 117보다 성능이 우수하였다. SHIPS 이온교환막의 유기용매에서의 내구성은 가교시간이 증가할수록 증가하였으며 SEM 관찰 결과 술폰화시간이 진행됨에 따라 표면이 불균일하게 변화되는 것을 확인할 수 있었다.

Preparation and Characterization of Poly(styrenesulfonic acid)-grafted Fluoropolymer Membrane for Direct Methanol Fuel Cell

  • Choi, Jae-Hak;Kang, Phil-Hyun;Lim, Youn-Mook;Sohn, Joon-Yong;Shin, Jun-Hwa;Jung, Chan-Hee;Jeun, Joon-Pyo;Nho, Young-Chang
    • Korean Membrane Journal
    • /
    • 제9권1호
    • /
    • pp.52-56
    • /
    • 2007
  • A proton exchange membrane was prepared by ${\gamma}-irradiation-induced$ grafting of styrene into poly(tetrafluoro-ethylene-co-perfluoropropyl vinyl ether) (PFA) and subsequent sulfonation reaction. The degree of grafting (DOG) increased with an increase in the absorbed dose. The prepared membranes showed high ion exchange capacity reaching 3.0 meq/g, which exceeded the performance of commercially available perfluorosulfonic acid membranes such as Nafion. The proton conductivity of PFA-g-PSSA membrane increased with the DOG and reached 0.17 S/cm for the highest sample at room temperature. The DMFC performance of the prepared membranes with 50% DOG was comparable to that of Nafion membrane.

pH와 이온강도가 나트륨-운모를 이용한 방사성 핵종 흡착제거에 미치는 영향 (Effect of pH and ionic strength on the removal of radionuclide by Na-mica)

  • 설빛나;조윤철
    • 상하수도학회지
    • /
    • 제28권1호
    • /
    • pp.83-89
    • /
    • 2014
  • The aim of this study is to investigate the sorption/ion exchange of radioactive nuclides such as $Cs^+$ and $Sr^{2+}$ by synthetic Na-micas. In order to prepare Na-micas, two natural micas (phlogopite and biotite) were used as precursor materials. XRD, SEM, and EDS analyses were used to examine material characterization of synthetic Na-micas. Analyses of materials revealed that Na-micas were successfully obtained from natrual micas by K removal treatment. On the other hand, single solute (Cs or Sr) and bi-solute (Cs/Sr) sorption experiments were carried out to determine sorption capacity of Na-micas for Cs and Sr under different pH and ionic strength conditions. Uptake of Cs and Sr by micas in bi-solute system was lower than in single-solute system. Additionally, Langmuir and Langmuir competitive models were applied to describe sorption isotherm of Na-micas. bi-solute system was well described by Langmuir competitive models. For the results obtained in this study, Na-micas could be promising sorbents to treat multi-radioactive species from water and groundwater.