• Title/Summary/Keyword: inverter-based

Search Result 1,292, Processing Time 0.043 seconds

PUF Logic Employing Dual Anti-fuse OTP Memory for High Reliability (신뢰성 향상을 위한 듀얼 안티퓨즈 OTP 메모리 채택 D-PUF 회로)

  • Kim, Seung Youl;Lee, Je Hoon
    • Convergence Security Journal
    • /
    • v.15 no.3_1
    • /
    • pp.99-105
    • /
    • 2015
  • A typical SRAM-based PUF is used in random number generation and key exchange process. The generated out puts should be preserved, but the values are changed owing to the external environment. This paper presents a new D-PUF logic employing a dual anti-fuse OTP memory to the SRAM-based PUF. The proposed PUF can enhance the reliability of the logic since it can preserve the output values. First, we construct the OTP memory using an anti-fuse. After power up, a SRAM generates the random values owing to the mismatch of cross coupled inverter pair. The generated random values are programed in the proposed anti-fuse ROM. The values that were programed in the ROM at once will not be changed and returned. Thus, the outputs of the proposed D-PUF are not affected by the environment variable such as the operation voltage and temperature variation, etc. Consequently, the reliability of the proposed PUF will be enhanced owing to the proposed dual anti-fuse ROM. Therefore, the proposed D-PUF can be stably operated, in particular, without the powerful ECC in the external environment that are changed.

Modeling and Dynamic Analysis for Electric Vehicle Powertrain Systems (전기 자동차 파워트레인의 모델링 및 동특성 분석)

  • Park, Gwang-Min;Lee, Seong-Hun;Jin, Sung-Ho;Kwak, Sang-Shin
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.6
    • /
    • pp.71-81
    • /
    • 2011
  • Unlike a typical internal combustion engine vehicle, the powertrain system of the pure electric vehicle, consisting of battery, inverter and motor, has direct effects on the vehicle performance and dynamics. Then, the specific modeling of such complex electro-mechanical components enables the insight into the longitudinal dynamic outputs of the vehicle and analysis of entire powertrain systems. This paper presents the dynamic model of electric vehicle powertrain systems based on theoretical approaches to predict and analyze the final output performance of electric vehicles. Additionally, the correlations between electric input signals and the final output of the mechanical system are mathematically derived. The proposed model for powertrain dynamics of electric vehicle systems are validated with a reference electric vehicle model using generic simulation platform based on Matlab/Simulink software. Consequently, the dynamic analysis results are compared with electric vehicle simulation model in some parameters such as vehicle speed/acceleration, and propulsion forces.

Realization of a New PWM Inverter Using Walsh Series (왈쉬 급수를 이용한 새로운 PWM 인버터의 구현)

  • Joe, Jun-Ik;Chon, Byoung-Sil
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.10
    • /
    • pp.124-129
    • /
    • 1990
  • This paper describes a new method to eliminate some selected harmonics (5,7,11) in PWM waveforms using Walsh and related orthogonal functions. Previous analyses of PWM waveforms are based on the nonlinear equations requiring iterative solution methods which are not practical in real-time systems. In addition, synthesis of low harmonics waveform at high power system is not easy to implement with power electronic hardware. The goal of this paper is to achieve the harmonics elimination in a PWM waveform by replacing the nonlinear equations in Fourier analysis with linear algebraic equations resulting from the use of orthogonal Walsh equation. This paper also describes how to synthesize low ordered harmonic waveforms with practical power electronic hardware. Walsh and Radmacher functions are easily manipulated by Harmuth's array generator, and those algorithms are accurate, computationally efficient and faster than algorithm based on Fourier analysis. In addition, this method is simulated to synthesize periodic PWM waveforms. From the experi-mental results, it is shown that single-phase PWM waveform are identified with the proposed method. And these methods are also extended to three-phase PWM waveforms in this paper.

  • PDF

Effects of Symmetrically Arranged Heat Sources on the Heat Release Performance of Extruded-Type Heat Sinks (열원의 대칭 배열에 따른 압출형 히트싱크의 방열성능 연구)

  • Ku, Min Ye;Shin, Hon Chung;Lee, Gyo Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.2
    • /
    • pp.119-126
    • /
    • 2016
  • In this study we investigated the effects of symmetrically arranged heat sources on the heat release performances of extruded-type heat sinks through experiments and thermal fluid simulations. Also, based on the results we suggested a high-efficiency and cost-effective heat sink for a solar inverter cooling system. In this parametric study, the temperatures between heaters on the base plate and the heat release rates were investigated with respect to the arrangements of heat sources and amounts of heat input. Based on the results we believe that the use of both sides of the heat sink is the preferred method for releasing the heat from the heat source to the ambient environment rather than the use of a single side of the heat sink. Also from the results, it is believed that the symmetric arrangement of the heat sources is recommended to achieve a higher rate of heat transfer. From the results of the thermal fluid simulation, it was possible to confirm the qualitative agreement with the experimental results. Finally, quantitative comparison with respect to mass flow rates, heat inputs, and arrangements of the heat source was also performed.

Evaluation of Flexible Complementary Inverters Based on Pentacene and IGZO Thin Film Transistors

  • Kim, D.I.;Hwang, B.U.;Jeon, H.S.;Bae, B.S.;Lee, H.J.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.154-154
    • /
    • 2012
  • Flexible complementary inverters based on thin-film transistors (TFTs) are important because they have low power consumption and high voltage gain compared to single type circuits. We have manufactured flexible complementary inverters using pentacene and amorphous indium gallium zinc oxide (IGZO) for the p-channel and n-channel, respectively. The circuits were fabricated on polyimide (PI) substrate. Firstly, a thin poly-4-vinyl phenol (PVP) layer was spin coated on PI substrate to make a smooth surface with rms surface roughness of 0.3 nm, which was required to grow high quality IGZO layers. Then, Ni gate electrode was deposited on the PVP layer by e-beam evaporator. 400-nm-thick PVP and 20-nm-thick ALD Al2O3 dielectric was deposited in sequence as a double gate dielectric layer for high flexibility and low leakage current. Then, IGZO and pentacene semiconductor layers were deposited by rf sputter and thermal evaporator, respectively, using shadow masks. Finally, Al and Au source/drain electrodes of 70 nm were respectively deposited on each semiconductor layer using shadow masks by thermal evaporator. The characteristics of TFTs and inverters were evaluated at different bending radii. The applied strain led to change in voltage transfer characteristics of complementary inverters as well as source-drain saturation current, field effect mobility and threshold voltage of TFTs. The switching threshold voltage of fabricated inverters was decreased with increasing bending radius, which is related to change in parameters of TFTs. Throughout the bending experiments, relationship between circuit performance and TFT characteristics under mechanical deformation could be elucidated.

  • PDF

Hybrid complementary circuits based on organic/inorganic flexible thin film transistors with PVP/Al2O3 gate dielectrics

  • Kim, D.I.;Seol, Y.G.;Lee, N.E.;Woo, C.H.;Ahn, C.H.;Ch, H.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.479-479
    • /
    • 2011
  • Flexible inverters based on complementary thin-film transistor (CTFTs) are important because they have low power consumption and other advantages over single type TFT inverters. In addition, integrated CTFTs in flexible electronic circuits on low-cost, large area and mechanically flexible substrates have potentials in various applications such as radio-frequency identification tags (RFIDs), sensors, and backplanes for flexible displays. In this work, we introduce flexible complementary inverters using pentacene and amorphous indium gallium zinc oxide (IGZO) for the p-channel and n-channel, respectively. The CTFTs were fabricated on polyimide (PI) substrate. Firstly, a thin poly-4-vinyl phenol (PVP) layer was spin coated on PI substrate to make a smooth surface with rms surface roughness of 0.3 nm, which was required to grow high quality IGZO layers. Then, Ni gate electrode was deposited on the PVP layer by e-beam evaporator. 400-nm-thick PVP and 20-nm-thick ALD Al2O3 dielectric was deposited in sequence as a double gate dielectric layer for high flexibility and low leakage current. Then, IGZO and pentacene semiconductor layers were deposited by rf sputter and thermal evaporator, respectively, using shadow masks. Finally, Al and Au source/drain electrodes of 70 nm were respectively deposited on each semiconductor layer using shadow masks by thermal evaporator. Basic electrical characteristics of individual transistors and the whole CTFTs were measured by a semiconductor parameter analyzer (HP4145B, Agilent Technologies) at room temperature in the dark. Performance of those devices then was measured under static and dynamic mechanical deformation. Effects of cyclic bending were also examined. The voltage transfer characteristics (Vout- Vin) and voltage gain (-dVout/dVin) of flexible inverter circuit were analyzed and the effects of mechanical bending will be discussed in detail.

  • PDF

Low Power Clock Generator Based on An Area-Reduced Interleaved Synchronous Mirror Delay Scheme (면적을 감소시킨 중첩된 싱크러너스 미러 지연 소자를 이용한 저전력 클럭 발생기)

  • Seong, Gi-Hyeok;Park, Hyeong-Jun;Yang, Byeong-Do;Kim, Lee-Seop
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.8
    • /
    • pp.46-51
    • /
    • 2002
  • A new interleaved synchronous mirror delay(SMD) is proposed in order to reduce the circuit size and the power. The conventional interleaved SMD has multiple pairs of forward delay array(FDA) and backward delay away(BDA) in order to reduce the jitter. The proposed interleaved SMD. requires one FDA and one BDA by changing the position of multiplexer. Moreover, the proposed interleaved SMD solves the polarity problem with just one extra inverter. Simulation results show that about 30% power reduction and 40% area reduction are achieved in the proposed interleaved SMD. All circuit simulations and implementations are based on a 0.25um two-metal CMOS technology.

A Novel Control Strategy of Three-phase, Four-wire UPQC for Power Quality Improvement

  • Pal, Yash;Swarup, A.;Singh, Bhim
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • The current paper presents a novel control strategy of a three-phase, four-wire Unified Power Quality (UPQC) to improve power quality. The UPQC is realized by the integration of series and shunt active power filters (APF) sharing a common dc bus capacitor. The realization of shunt APF is carried out using a three-phase, four-leg Voltage Source Inverter (VSI), and the series APF is realized using a three-phase, three-leg VSI. To extract the fundamental source voltages as reference signals for series APF, a zero-crossing detector and sample-and-hold circuits are used. For the control of shunt APF, a simple scheme based on the real component of fundamental load current (I $Cos{\Phi}$) with reduced numbers of current sensors is applied. The performance of the applied control algorithm is evaluated in terms of power-factor correction, source neutral current mitigation, load balancing, and mitigation of voltage and current harmonics in a three-phase, four-wire distribution system for different combinations of linear and non-linear loads. The reference signals and sensed signals are used in a hysteresis controller to generate switching signals for shunt and series APFs. In this proposed UPQC control scheme, the current/voltage control is applied to the fundamental supply currents/voltages instead of fast-changing APF currents/voltages, thus reducing the computational delay and the required sensors. MATLAB/Simulink-based simulations that support the functionality of the UPQC are obtained.

MRAS Based Sensorless Control of a Series-Connected Five-Phase Two-Motor Drive System

  • Khan, M. Rizwan;Iqbal, Atif
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.224-234
    • /
    • 2008
  • Multi-phase machines can be used in variable speed drives. Their applications include electric ship propulsion, 'more-electric aircraft' and traction applications, electric vehicles, and hybrid electric vehicles. Multi-phase machines enable independent control of a few numbers of machines that are connected in series in a particular manner with their supply being fed from a single voltage source inverter(VSI). The idea was first implemented for a five-phase series-connected two-motor drive system, but is now applicable to any number of phases more than or equal to five-phase. The number of series-connected machines is a function of the phase number of VSI. Theoretical and simulation studies have already been reported for number of multi-phase multi-motor drive configurations of series-connection type. Variable speed induction motor drives without mechanical speed sensors at the motor shaft have the attractions of low cost and high reliability. To replace the sensor, information concerning the rotor speed is extracted from measured stator currents and voltages at motor terminals. Open-loop estimators or closed-loop observers are used for this purpose. They differ with respect to accuracy, robustness, and sensitivity against model parameter variations. This paper analyses operation of an MRAS estimator based sensorless control of a vector controlled series-connected two-motor five-phase drive system with current control in the stationary reference frame. Results, obtained with fixed-voltage, fixed-frequency supply, and hysteresis current control are presented for various operating conditions on the basis of simulation results. The purpose of this paper is to report the first ever simulation results on a sensorless control of a five-phase two-motor series-connected drive system. The operating principle is given followed by a description of the sensorless technique.

Comparative Study of PI, FNN and ALM-FNN for High Control of Induction Motor Drive (유도전동기 드라이브의 고성능 제어를 위한 PI, FNN 및 ALM-FNN 제어기의 비교연구)

  • Kang, Sung-Jun;Ko, Jae-Sub;Choi, Jung-Sik;Jang, Mi-Geum;Back, Jung-Woo;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.408-411
    • /
    • 2009
  • In this paper, conventional PI, fuzzy neural network(FNN) and adaptive teaming mechanism(ALM)-FNN for rotor field oriented controlled(RFOC) induction motor are studied comparatively. The widely used control theory based design of PI family controllers fails to perform satisfactorily under parameter variation nonlinear or load disturbance. In high performance applications, it is useful to automatically extract the complex relation that represent the drive behaviour. The use of learning through example algorithms can be a powerful tool for automatic modelling variable speed drives. They can automatically extract a functional relationship representative of the drive behavior. These methods present some advantages over the classical ones since they do not rely on the precise knowledge of mathematical models and parameters. Comparative study of PI, FNN and ALM-FNN are carried out from various aspects which is dynamic performance, steady-state accuracy, parameter robustness and complementation etc. To have a clear view of the three techniques, a RFOC system based on a three level neutral point clamped inverter-fed induction motor drive is established in this paper. Each of the three control technique: PI, FNN and ALM-FNN, are used in the outer loops for rotor speed. The merit and drawbacks of each method are summarized in the conclusion part, which may a guideline for industry application.

  • PDF