• Title/Summary/Keyword: inverter-based

Search Result 1,292, Processing Time 0.033 seconds

A Simple Static Overmodulation Scheme using Space Vector PWM Method (공간벡터 PWM을 이용한 간단한 정적 과변조기법)

  • Lee, Dong-Myung;Kim, Jin-Ho;Yang, Hyun-Suk;Jung, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.234-241
    • /
    • 2011
  • This paper proposes a simple static overmodulation strategy that extends the linearity of the inverter output voltage. The proposed method obtains the reference vector having the instantaneous value directly from the modulation index based on the magnitude of fundamental voltage, and has a simplified form of phase command. This method does not need trigonometric functions for calculating the magnitude of the reference vector. The magnitude of reference voltage and holding angle in the overmodulation region corresponding to the modulation index are determined in advance to have the same fundamental voltage magnitude by using the result of Fourier series expansion.

A Novel Position Sensorless Speed Control Scheme for Permanent Magnet Synchronous Motor Drives (영구자석 동기전동기의 센서리스 속도제어 시스템)

  • Won, Tae-Hyun;Park, Han-Woong;Song, Dall-Sup;Kim, Moon-Soo;Lee, Man-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.112-116
    • /
    • 2002
  • A sensorless control strategy for permanent magnet synchronous motors is presented in this paper. A speed control scheme based on the measurement and observation of stator current, voltage. and flux vector is proposed. Two phase voltages and two stator currents are measured and processed in discrete form in DSP. The rotor position and speed are estimated through the stator flux and its derivative estimation. Flux and its derivative are calculated in the stationary reference frame and used to estimate the speed and position. The rotor position angle is then used in a microcontroller to produce the appropriate stator current command signals for the hysteresis current controller of the inverter. The closed-loop speed control has been shown to be effective from standstill to rated speed. Moreover, a flux drift problem caused by the integration can be eliminated so that a stable sensorless starting and running operation can be achieved. Computer simulation and experimental results are presented to demonstrate the effectiveness of the proposed scheme.

  • PDF

Development of High-speed Elevator Drive System using Permanent-magnet Synchronous Motor (영구 자석형 동기 전동기를 이용한 고속 엘리베이터 구동 시스템 개발)

  • Ryu Hyung-Min;Kim Sung-Jun;Sul Seung-Ki;Kwon Tae-Seok;Kim Ki-Su;Shim Young-Seok;Seok Ki-Riong
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.385-388
    • /
    • 2001
  • In this paper, the gearless traction machine drive system using a permanent-maget motor for high-speed elevators is addressed. This application of permanent-magnet motor to the elevator traction machine enables several improvements including higher efficiency, better ride comfort, smaller size and weight, and so on. PWM boost converter is also adopted so that DC-link voltage regulation, hi-directional power flow, and controllable power factor with reduced input current harmonics are possible. To increase reliability and performance, the control board, which can include the car and group controller as well as PWM converter and inverter controller, is designed based on TMS320VC33 DSP The simulator system for high-speed elevators has been developed so that the drive system of high-speed elevator can be tested without my limitation on ride distance and the load condition. Some experimental results are given to verify the effectiveness of the developed system.

  • PDF

A Wind Turbine Simulator for Doubly-Fed Induction-type Generator with Automatic Operation Mode Change during Wind Speed Variation (가변 풍속시 운전모드 절환을 고려한 이중여자 유도형 풍력발전기의 시뮬레이터)

  • Song, Seung-Ho;Sim, Dong-Joon;Jeong, Byoung-Chang
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.349-360
    • /
    • 2006
  • Controller for doubly-fed induction-type wind generation system should be designed with mechanical power on blade. The controller in this paper consists of upper level controller and lower level controller. The upper level controller determines operating modes according to mechanical input power and calculates proper reference values. There are 4 operating modes - minimum speed control, variable torque control, torque limit control and idle mode. The lower level controller performs current regulated PWM control of rotor-side converter and grid-side inverter. A wind turbine simulator is implemented using doubly-fed induction-type generator and DSP based back-to-back converter to verify the performance of designed controller experimentally.

Implementation Method for an Induction Motor Drive System Using Network Sensors (네트워크 센서를 이용한 유도전동기 구동시스템 구현 기법)

  • Kim, Dong-Sik;Chun, Tae-Won;Ahn, Jung-Ryol;Kim, Heung-Gun;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.563-569
    • /
    • 2006
  • In this paper, the system to control the PWM inverter-induction motor drive system including ac current sensors, voltage sensors, and an encoder through the network is developed. Although the network-based control for an induction motor drive system is becoming increasingly important at factory automations, there will inevitably be time delay from the sensors to the motor control system, which may cause the instability. The algorithm to minimize the efforts for network induced time delay of sensor data is proposed, using both the synchronous signal and the method for estimating sensor data. The experiments with DSP are carried out in order to verify proposed algorithms.

Chopper Controller Based DC Voltage Control Strategy for Cascaded Multilevel STATCOM

  • Xiong, Lian-Song;Zhuo, Fang
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.576-588
    • /
    • 2014
  • The superiority of CMI (Cascaded Multilevel Inverter) is unparalleled in high power and high voltage STATCOM (Static Synchronous Compensator). However, the parameters and operating conditions of each individual power unit composing the cascaded STATCOM differ from unit to unit, causing unit voltage disequilibrium on the DC side. This phenomenon seriously impairs the operation performance of STATCOM, and thus maintaining the DC voltage balance and stability becomes critical for cascaded STATCOM. This paper analyzes the case of voltage disequilibrium, combines the operation characteristics of the cascaded STATCOM, and proposes a new DC voltage control scheme with the advantages of good control performance and stability. This hierarchical control method uses software to achieve the total active power control and also uses chopper controllers to enable that the imbalance power can flow among the capacitors in order to keep DC capacitor voltages balance. The operating principle of the chopper controllers is analyzed and the implementation is presented. The major advantages of the proposed control strategy are that the number of PI regulators has been decreased remarkably and accordingly the blindness of system design and debugging also reduces obviously. The simulation reveals that the proposed control scheme can achieve the satisfactory control goals.

Common-mode Voltage Reduction for Inverters Connected in Parallel Using an MPC Method with Subdivided Voltage Vectors

  • Park, Joon Young;Sin, Jiook;Bak, Yeongsu;Park, Sung-Min;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1212-1222
    • /
    • 2018
  • This paper presents a model predictive control (MPC) method to reduce the common-mode voltage (CMV) for inverters connected in parallel, which increase the capacity of energy storage systems (ESSs). The proposed method is based on subdivided voltage vectors, and the resulting algorithm can be applied to control the inverters. Furthermore, we use more voltage vectors than the conventional MPC algorithm; consequently, the quality of grid currents is improved. Several methods were proposed in order to reduce the CMV appearing during operation and its adverse effects. However, those methods have shown to increase the total harmonic distortion of the grid currents. Our method, however, aims to both avoid this drawback and effectively reduce the CMV. By employing phase difference in the carrier signals to control each inverter, we successfully reduced the CMV for inverters connected in parallel, thus outperforming similar methods. In fact, the validity of the proposed method was verified by simulations and experimental results.

Implementation of Industrial AC Motor Drive Using the Direct Vector Control (직접벡터제어에 의한 산업용 전동기의 구동시스템 구현)

  • 손진근;박종찬;문학룡;김병진;전희종
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.4
    • /
    • pp.81-89
    • /
    • 1998
  • In the field of industrial drives, the vector control of the induction motor has been widely used to achieve the good control performance. In this paper, to require the information of rotor flux in direct vector control scheme, the flux observer by current model of rotor circuit is used. This flux observer is not only available at low-speed region bt good for the error reduction by feedback properties. Also, employing the flux observer on rotor reference frame, the robustness of decoupling control to the observation of rotor flux can be achieved. Through digital simulation and DSP-based IGBT inverter system, the validity for practical implementation is verified.

  • PDF

Steady-State Analysis of ZVS and NON-ZVS Full-Bridge Inverters with Asymmetrical Control for Induction Heating Applications

  • Yachiangkam, Samart;Sangswang, Anawach;Naetiladdanon, Sumate;Koompai, Chayant;Chudjuarjeen, Saichol
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.544-554
    • /
    • 2015
  • This paper presents a steady-state operation analysis of full-bridge series-resonant inverters focusing on the distorted load current due to low-quality-factor resonant circuits in induction heating and other applications. The regions of operation based on the zero-voltage switching (ZVS) and non-zero-voltage switching (NON-ZVS) operations of the asymmetrical voltage-cancellation control technique are identified. The effects of a distorted load current under a wide range of output powers are also analyzed for achieving a precise ZVS operating region. An experimental study is performed with a 1kW prototype. Simulation and experimental studies have confirmed the validity of the proposed method. An efficiency comparison between the variable frequency method and the conventional fixed-frequency method is provided.

Control Strategy for a Grid Stabilization of a Large Scale PV Generation System based on German Grid Code (독일 계통 연계 규정에 기반 된 대용량 태양광 발전 시스템의 계통 안정화를 위한 제어 전략)

  • Bae, Young-Sang;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.41-50
    • /
    • 2014
  • The rising penetration of renewable energy resulted in the development of grid-connected large-scale power plants. Therefore, grid stabilization, which depends on the system-type or grid of each country, plays an important role and has been strengthened by different grid codes. With this background, VDE-AR-N 4105 for photovoltaic (PV) systems connected to the low-voltage grid and the German Association of Energy and Water Industries (BDEW) introduced the medium-voltage grid code for connecting power plants to the grid and they are the most stringent certifications. In this paper, an optimal control strategy scheme for three-phase grid-connected PV system is enhanced with VDE-AR-N 4105 and BDEW grid code, where both active/reactive powers are controlled. Simulation and experimental results of 100kW PV inverter are shown to verify the effectiveness of the proposed implemental control strategy.