• Title/Summary/Keyword: inverter-based

Search Result 1,292, Processing Time 0.022 seconds

Electric Model of Li-Ion Polymer Battery for Motor Driving Circuit in Hybrid Electric Vehicle

  • Lee, June-Sang;Lee, Jae-Joong;Kim, Mi-Ro;Park, In-Jun;Kim, Jung-Gu;Lee, Ki-Sik;Nah, Wan-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.932-939
    • /
    • 2012
  • This paper presents an equivalent circuit model of a LIPB (Li-Ion Polymer battery) for Hybrid Electric Vehicles (HEVs). The proposed equivalent circuit can be used to predict the charging/discharging characteristics in time domain as well as the impedance characteristic analysis in frequency domain. Based on these features, a one-cell model is established as a function of Depth of Discharge (DoD), and a 48-cell model for a battery pack was also established. It was confirmed by experiment that the proposed model predict the discharging and impedance (AC) characteristics quite accurately at different constant current levels. To check the usefulness of the proposed circuit, the model was used to simulate a motor driving circuit with an Insulated Gate Bipolar Transistor (IGBT) inverter and Brushless DC (BLDC) motor, and it is confirmed that the model can calculate the battery voltage fluctuation in time domain at different DoDs.

Thermal Analysis of Interior Permanent-Magnet Synchronous Motor by Electromagnetic Field-Thermal Linked Analysis

  • Lee, Sang-Taek;Kim, Hee-Jun;Cho, Ju-Hee;Joo, Dae-Suk;Kim, Dae-Kyong
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.905-910
    • /
    • 2012
  • This paper reports an investigation of pulse width modulation (PWM) techniques for twophase brushless DC (BLDC) motors fed by a two-phase eight-switch inverter in a fan application. The three-phase BLDC motor is widely applied in industry; however, a lower-cost two-phase BLDC motor and drive circuit has been greatly in demand in recent years. In this paper, we introduce a mathematical model of the two-phase BLDC motor with sinusoidal back electromotive forces (EMFs) based on traditional three-phase BLDC motors. To simplify the drive algorithm and speed up its application, we analyze the principle of block commutation for a two-phase BLDC motor drive in the 180-electricaldegree conduction mode, and we further propose five PWM schemes to improve the commutation performance of the two-phase BLDC drive. The effectiveness of the proposed PWM methods is verified through experiments.

DFIG Wind Power System with a DDPWM Controlled Matrix Converter

  • Lee, Ji-Heon;Jeong, Jong-Kyou;Han, Byung-Moon;Choi, Nam-Sup;Cha, Han-Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.299-306
    • /
    • 2010
  • This paper proposes a new doubly-fed induction generator (DFIG) system using a matrix converter controlled by direct duty ratio pulse-width modulation (DDPWM) scheme. DDPWM is a recently proposed carrier based modulation strategy for matrix converters which employs a triangular carrier and voltage references in a voltage source inverter. By using DDPWM, the matrix converter can directly and effectively generate rotor voltages following the voltage references within the closed control loop. The operation of the proposed DFIG system was verified through computer simulation and experimental works with a hardware simulator of a wind power turbine, which was built using a motor-generator set with vector drive. The simulation and experimental results confirm that a matrix converter with a DDPWM modulation scheme can be effectively applied for a DFIG wind power system.

The power regulation of a High-Frequency Induction Heating System with time variance load using a neural fuzzy controller (뉴로퍼지 제어기를 이용한 고주파 유도 가열기의 시변부하에 대한 정전력 제어)

  • 장종승;김승철;임영도
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.2
    • /
    • pp.223-230
    • /
    • 1998
  • This paper describes a phase-shift pulse-width modulation and pulse-frequency modulation series resonant high-frequency inverter using IGBT(Insulated-Gated Bipolar Transistor) for the power control of high-frequency induction heating using neuro-fuzzy, which is practically applied for 20KHz~500KHz induction-heating and melting power supply in industrial fields. The adaptive frequency tracking based phase-shifting PWM(Pulse-Width Modulation) regulation scheme is presented in order to minimize switching losses. The trially-produced breadboards using IGBT are successfully demonstrated and discussed.

  • PDF

Application of Fuzzy PI Control Algorithm as Stator Power Controller of a Double-Fed Induction Machine in Wind Power Generation Systems

  • Chung, Gyo-Bum;Choi, Jae-Ho
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.109-116
    • /
    • 2009
  • This paper addresses the output control of a utility-connected double-fed induction machine (DFIM) for wind power generation systems (WPGS). DFIM has a back-to-back converter to control outputs of DFIM driven by the wind turbine for WPGS. To supply commercially the power of WPGS to the grid without any problems related to power quality, the real and reactive powers (PQ) at the stator side of DFIM are strictly controlled at the required level, which in this paper is realized with the Fuzzy PI controller based on the field orientation control. For the Sinusoidal Pulse Width Modulation (SPWM) converter connected to the rotor side of DFIG to maintain the controllability of PQ at the state side of DFIM, the DC voltage of the DC link capacitor is also controlled at a certain level with the conventional Proportion-Integral (PI) controller of the real power. In addition, the power quality at the grid connected to the rotor side of DFIM through the back-to-back converter is maintained in a certain level with a PI controller of the reactive power. The controllers for the PQ at the stator side of DFIM, the DC link voltage of the back-to-back inverter and the reactive power at the grid connected to the rotor side of DFIM are designed and simulated in the PSIM program, of which the result verifies the performance of the proposed controllers.

A Droop Method for High Capacity Parallel Inverters Considering Accurate Real Power Sharing

  • Kim, Donghwan;Jung, Kyosun;Lim, Kyungbae;Choi, Jaeho
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.38-47
    • /
    • 2016
  • This paper presents DG based droop controlled parallel inverter systems with virtual impedance considering the unequal resistive-inductive combined line impedance condition. This causes a reactive power sharing error and dynamic performance degradation. Each of these drawbacks can be solved by adding the feedforward term of each line impedance voltage drop or injecting the virtual inductor. However, if the line impedances are high enough because of the long distance between the DG and the PCC or if the capacity of the system is large so that the output current is very large, this leads to a high virtual inductor voltage drop which causes reductions of the output voltage and power. Therefore, the line impedance voltage drops and the virtual inductor and resistor voltage drop compensation methods have been considered to solve these problems. The proposed method has been verified in comparison with the conventional droop method through PSIM simulation and low-scale experimental results.

On DC-Side Impedance Frequency Characteristics Analysis and DC Voltage Ripple Prediction under Unbalanced Conditions for MMC-HVDC System Based on Maximum Modulation Index

  • Liu, Yiqi;Chen, Qichao;Li, Ningning;Xie, Bing;Wang, Jianze;Ji, Yanchao
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.319-328
    • /
    • 2016
  • In this study, we first briefly introduce the effect of circulating current control on the modulation signal of a modular multilevel converter (MMC). The maximum modulation index is also theoretically derived. According to the optimal modulation index analysis and the model in the continuous domain, different DC-side output impedance equivalent models of MMC with/without compensating component are derived. The DC-side impedance of MMC inverter station can be regarded as a series xR + yL + zC branch in both cases. The compensating component of the maximum modulation index is also related to the DC equivalent impedance with circulating current control. The frequency characteristic of impedance for MMC, which is observed from its DC side, is analyzed. Finally, this study investigates the prediction of the DC voltage ripple transfer between two-terminal MMC high-voltage direct current systems under unbalanced conditions. The rationality and accuracy of the impedance model are verified through MATLAB/Simulink simulations and experimental results.

PI Controlled Active Front End Super-Lift Converter with Ripple Free DC Link for Three Phase Induction Motor Drives

  • Elangovan, P.;Mohanty, Nalin Kant
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.190-204
    • /
    • 2016
  • An active front end (AFE) is required for a three-phase induction motor (IM) fed by a voltage source inverter (VSI), because of the increasing need to derive quality current from the utility end without sacrificing the power factor (PF). This study investigates a proportional-plus-integral (PI) controller based AFE topology that uses a super-lift converter (SLC). The significance of the proposed SLC, which converts rectified AC supply to geometrically proceed ripple-free DC supply, is explained. Variations in several power quality parameters in the intended IM drive for 0% and 100% loading conditions are demonstrated. A simulation is conducted by using MATLAB/Simulink software, and a prototype is built with a field programmable gate array (FPGA) Spartan-6 processor. Simulation results are correlated with the experimental results obtained from a 0.5 HP IM drive prototype with speed feedback and a voltage/frequency (V/f) control strategy. The proposed AFE topology using SLC is suitable for three-phase IM drives, considering the supply end PF, the DC-link voltage and current, the total harmonic distortion (THD) in supply current, and the speed response of IM.

High-Performance Control of Three-Phase Four-Wire DVR Systems using Feedback Linearization

  • Jeong, Seon-Yeong;Nguyen, Thanh Hai;Le, Quoc Anh;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.351-361
    • /
    • 2016
  • Power quality is a critical issue in distribution systems, where a dynamic voltage restorer (DVR) is commonly used to mitigate the voltage disturbances for loads. This paper deals with a nonlinear control for the three-phase four-wire (3P-4W) DVR under a grid voltage unbalance and nonlinear loads in the distribution system, where a novel control scheme based on the feedback linearization technique is proposed. Through feedback linearization, a nonlinear model of a DVR with a PWM voltage-source inverter (VSI) and LC filters is linearized. Then, the controller design of the linearized model is performed by applying the linear control theory, where the load voltages are kept constant by controlling the d-q-0 axis components of the DVR output voltages. To keep the load voltage unchanged, an in-phase compensation strategy is employed, where the load voltages are recovered to be the same as the previous voltage without a change in the magnitude. With this strategy, the performance of the DVR becomes faster and more stable even under unbalanced source voltages and nonlinear loads. The validity of the proposed control strategy has been verified by simulation and experimental results.

Design and Experiment of Three-phase Interleaved DC-DC Converter for 5kW Lead-Acid Battery Charger (5kW 배터리 충전기용 양방향 3상 인터리브드 DC-DC 컨버터 설계 및 실험)

  • Lee, Wu-Jong;Eom, Ju-Kyoung;Han, Byung-Moon;Cha, Han-Ju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.227-233
    • /
    • 2011
  • This paper proposes a design and experiment of three phase interleaved dc-dc converter for 5kW battery charger. The charger consists of a three-phase interleaved dc-dc converter, which interfaces batteries and DC link, and a grid connected inverter. Lead-acid battery is modeled in a simple R-C model by matlab. Parameters of the battery are estimated based on step current discharging test. The battery is connected to three-phase interleaved DC-DC converter in order to reduce the ripple current to the battery and so, increase the lifetime of battery. Controller for charging and discharging mode is designed and tested in a 5kW charger prototype.