• Title/Summary/Keyword: inverter-based

Search Result 1,292, Processing Time 0.031 seconds

A High-Performance Position Sensorless Motion Control System of Induction Motor with Direct Torque Control (직접 토크제어에 의한 위치검출기 없는 유도전동기의 고성능 모션제어 시스템)

  • Kim, Min-Hoe;Kim, Nam-Hun;Baek, Won-Sik
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.7
    • /
    • pp.399-405
    • /
    • 2002
  • This paper presents an implementation of digital high-performance Position sensorless motion control system of an induction motor drives with Direct Torque Control(DTC). The system consist of closed loop stator flux and torque observer, speed and torque estimators, two hysteresis controller, optimal switching look-up table, IGBT voltage source inverter, and TMS320C31 DSP board. The stator flux observer is based on the combined current and voltage model with stator flux feedback adaptive control of which inputs are current and voltage sensed on motor terminal for wide speed range. The speed observer is using the model reference adaptive system(MRAS) with rotor flux linkages for speed turning signal. The simulation and experimental results are provided to evacuate the consistency and the performance of the suggested position sensorless control algorithm. The developed position sensorless system are shown a good motion control response characteristic and high performance features using 2.2[kw] general purposed induction motor.

A Study on the Design and Control Characteristics for Optimum Operation of the PV System-based ESS (PV System 기반 ESS의 최적운전을 위한 설계 및 제어 특성에 관한 연구)

  • Cha, Insu;Park, Jongbok;Jung, Gyeonghwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.5
    • /
    • pp.19-30
    • /
    • 2016
  • In this study, realize voltage regulation $220Vac{\pm}10%$ or less, frequency fluctuation $60Hz{\pm}1%$ or less over the independent operation and grid-connected operation technologies for power stabilization relates to the ESS designed and manufactured in conjunction with solar installations and solar to compensate the output reduction due to the polarization of the solar module through the polarization prevention technology for preventing the optical module efficiency is lowered, in conjunction with the BMS inverter efficiency was more than 92%, more than 90% of the charging efficiency to the target. This study was designed in conjunction with the ESS solar power plants, grid-connected operation and independent operation, Peak-Cut, it can stabilize the grid via the Peak-Shifting operation

DSM Resources Evaluation and Customer Behavior Analysis (DSM 자원평가 및 소비자 행태 분석)

  • Ahn, Nam-Seong;Park, Min-Hyuk;Rhu, Jae-Gook
    • Korean System Dynamics Review
    • /
    • v.5 no.1
    • /
    • pp.49-71
    • /
    • 2004
  • Demand-side Management can be defined as'any utility activity aimed at modifying customers' use of energy to produce desired changes in the utility's load shape'. Customers benefit by being able to control energy costs and improve quality of life and become more productive. Utilities benefit from DSM's value as a resource that enhances asset utilization and reduces both fuel costs and environmental emissions. The scope of DSM includes load management through rate schedules and conservation by improving energy effciency and using electricity consumption effectively. This paper study the DSM resource evaluation and customer behavior analysis todesign the DSM Program plan in response to customer needs. We develop basic system dynamics model to analysis the customer behavior based on a survey research. The DSM Program participants in the Hi- efficiency Inverter, Electric motor and efficient lighting applicancies operating by Conservation program 2002 become the survey objects. DSM resource evaluation evaluate firstt the distribution potentialities of each machine and then forecast the degree of diffusion. We apply the system dynamic approach to simulate the dynamic DSM market situation at the domestic beginning. This model will give the energy Planner the opportunity to create different scenarios for DSM program planning. Also it will lead to increased understanding of the dynamic DSM market

  • PDF

A Study on the High Performance Speed Control of Induction Motor Using Self-Learning Fuzzy Controller (자기학습형 퍼지제어기에 의한 유도전동기 고성능 속도제어에 관한 연구)

  • Park, Y.M.;Kim, Y.C.;Kim, J.M.;Won, C.Y.;Kim, Y.R.;Kim, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.505-508
    • /
    • 1997
  • In this paper, an auto-tuning method for fuzzy controller based on the neural network is presented. The backpropagated error of neural emulator offers the path which reforms the fuzzy controller's membership functions and fuzzy rule, and used for speed control of induction motor. For the torque control method, an indirect vector control scheme with slip calculation is used because of its stable characteristics regardless of speed. Motor input current is regulated by a current controlled voltage source PWM inverter using space voltage vector technique. Also, the scheme of current control fuzzy controller is synchronous reference frame with decoupling term. DSP(TMS320C31) is used to achieve the high speed calculation of the space voltage vector PWM and to build the self-learning fuzz. control algorithm. An IPM is used to simplify hardware design.

  • PDF

Harmonic Mitigation and Power Factor Improvement using Fuzzy Logic and Neural Network Controlled Active Power Filter

  • Kumar, V.Suresh;Kavitha, D.;Kalaiselvi, K.;Kannan, P. S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.520-527
    • /
    • 2008
  • This work focuses on the evaluation of active power filter which is controlled by fuzzy logic and neural network based controller for harmonic mitigation and power factor enhancement. The APF consists of a variable DC voltage source and a DC/AC inverter. The task of an APF is to make the line current waveform as close as possible to a sinusoid in phase with the line voltage by injecting the compensation current. The compensation current is estimated using adaptive neural network. Using the estimated current, the proposed APF is controlled using neural network and fuzzy logic. Computer simulations of the proposed APF are performed using MATLAB. The results show that the proposed techniques for the evaluation of APF can reduce the total harmonic distortion less than 3% and improve the power factor of the system to almost unity.

A Simple Control Strategy for Balancing the DC-link Voltage of Neutral-Point-Clamped Inverters at low modulation index (Neutral-Point-Clamped 인버터의 저 변조지수에서 DC 링크 전압 균형을 위한 간단한 컨트롤 기법)

  • Ma C.S.;Kim T.J.;Kang D.W.;Hyun D.S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.560-564
    • /
    • 2003
  • This paper proposes a simple control strategy based on the discontinuous PWM(DPWM) to balance the DC-link voltage of three-level Neutral-Point-Clamped(WPC) inverters at low modulation index. New DPWM methods in multi-level inverter are also introduced. The proposed DPWM method changes the path and duration to flow the neutral point current out of or into neutral point of the DC-link and it makes the overall fluctuation of the DC-link voltage zero during a sampling time of reference voltage vector. Therefore, the voltage of the DC-link can be balanced fairly well and also the voltage ripple of the DC-link is reduced significantly. Moreover, comparing with conventional methods, the proposed strategy is very simple. The validity of the proposed DPWM method is verified by experiment

  • PDF

A Study of Using Optimal Hysteresis Band Amplitude for Direct Torque Control of Induction Motor (유도전동기 직접토크제어의 히스테리시스 밴드 크기의 최적화에 관한 연구)

  • Jeong B.H.;Kim S.K.;Park J.K.;Oh G.K.;Cho G.B.;Baek H.L.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.812-815
    • /
    • 2003
  • Most of all, DTC drive is very simple in its implementation because it needs only two hysteresis comparator and switching vector table for both flux and torque control. The switching strategy of a conventional direct torque control scheme which is based on hysteresis comparator results in a variable switching frequency which depends on the speed, flux, stator voltage and the hysteresis of the comparator. The amplitude of hysteresis band greatly influences on the drive performance such as flux and torque ripple and inverter switching frequency. In this paper the influence of the amplitudes of flux and torque hysteresis bands and sampling time of control program on the torque and flux ripples are investigated. Simulation results confirm the superiority of the DTC under the proposed method over the conventional DTC.

  • PDF

The Study on FTPM and PSPM of High Frequency Induction-Heating Iron Load (고주파유도가열 철부하의 FTPM 및 PSPM 제어에 관한 연구)

  • 임영도;김두영
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.192-199
    • /
    • 2000
  • This paper describes a Phase-Shift Pulse Modulation(PSPM) and Frequency Trad이ng Pulse Modulation(FTPM) s series resonant high-frequency inverter using IGBT for the power control of high-frequency induction heating u using Neuro-Fuzzy, which is practically applied for 20kHz~500kHz induction-heating and melting power supply in i indust껴aJ fields. The adaptive frequency tracking based on the PSPM(phase-shifting pulse modulation) r regulation scherne is presented in or$\tau$ler to l11lmmlZe svvitching losses. The trially-produced breadboards using N Neuro Fuzzy controller are successfully demonstrated cUld cliscussed.

  • PDF

A Novel Active Anti-islanding Method for Grid-connected Photovoltaic Inverter

  • Jung, Young-Seok;Choi, Jae-Ho;Yu, Gwon-Jong
    • Journal of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.64-71
    • /
    • 2007
  • This paper proposes a novel active frequency drift (AFD) method to improve the islanding detection performance with minimum current harmonics. To detect the islanding phenomenon of grid-connected photovoltaic (PV) inverters concerning the safety hazards and possible damage to other electric equipment, anti-islanding methods have been described. The AFD method that uses chopping fraction (cf) enables the islanding detection to drift up (or down) the frequency of the voltage during the islanding situation. However, the performance of the conventional AFD method is inefficient and causes difficulty in designing the appropriate cf value to meet the limit of harmonics. In this paper, the periodic chopping fraction based on a novel AFD method is proposed. This proposed method shows the analytical design value of cf to meet the test procedure of IEEE Std. 929-2000 with power quality and islanding detection time. To verify the validation of the proposed method, the islanding test results are presented. It is confirmed that the proposed method has not only less harmonic distortion but also better performance of islanding detection compared with the conventional AFD method.

Maximum Torque Control of an IPMSM Drive Using an Adaptive Learning Fuzzy-Neural Network

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.468-476
    • /
    • 2012
  • The interior permanent magnet synchronous motor (IPMSM) has been widely used in electric vehicle applications due to its excellent power to weigh ratio. This paper proposes the maximum torque control of an IPMSM drive using an adaptive learning (AL) fuzzy neural network (FNN) and an artificial neural network (ANN). This control method is applicable over the entire speed range while taking into consideration the limits of the inverter's rated current and voltage. This maximum torque control is an executed control through an optimal d-axis current that is calculated according to the operating conditions. This paper proposes a novel technique for the high performance speed control of an IPMSM using AL-FNN and ANN. The AL-FNN is a control algorithm that is a combination of adaptive control and a FNN. This control algorithm has a powerful numerical processing capability and a high adaptability. In addition, this paper proposes the speed control of an IPMSM using an AL-FNN, the estimation of speed using an ANN and a maximum torque control using the optimal d-axis current according to the operating conditions. The proposed control algorithm is applied to an IPMSM drive system. This paper demonstrates the validity of the proposed algorithms through result analysis based on experiments under various operating conditions.