• Title/Summary/Keyword: inverter type unit

Search Result 50, Processing Time 0.025 seconds

DYNAMICAL PERFORMANCE OF A NEW TYPE OF THREE PHASE SYNCHRONOUS MOTOR DRIVE SUPPLTED BY SQUARE-WAVE INVERTERS

  • Soltani, Jafar
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.493-497
    • /
    • 1998
  • In this paper, a three phase voltage source inverter synchronous motor drive is introduced which is capable of producing an approximate to sine-wave currents in the stator windings. Compare to a conventional current forced synchronous machine drive, for the same machine loss, a gain in out put per unit overall volume of 125% at a 50Hz supply frequency has been achieved. In addition, the torque pulsation has been drastically reduced. These improvements are achieved by introducing new rotor windings which are capable of controlling the stator current waveforms an approximate to sine-wave. A computer program has been developed which can be used to predict the dynamic performance of this drive/system. The paper describes the design of rotor windings for cylindrical rotor motor but the theory is equally applicable to salient-pole designs.

  • PDF

A Modeling and Driving Performance for CCFL Applied to the Display Unit (표시장치에 적용되는 CCFL의 모델과 인버터 구동)

  • Kim, Cherl-Jin;Yoo, Byeong-Kyu;Yoon, Shin-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.197-199
    • /
    • 2005
  • The Cold cathode fluorescent lamp (CCFL) are widely used to illuminate the liquid crystal display(LCD). Ballasts are required for CCFL because the lamp need high starting voltage and behave negative dynamic resistant characteristics in the desired region of operation. Dimming methods of CCFL are used to pulse frequency modulation(PFM) or pulse width modulation(PWM). In this paper, CCFL driving and control circuit is designed by half-bridge type series and parallel resonant inverter that variable frequency modulation method to control the output voltage current. The validity of this study is confirmed from the simulation and experimental results.

  • PDF

Evaluation and Experimental Production of Single-Phase Full-wave Rectification Type for X-ray Equipment of High Precision (고정밀도의 단상전파정류형 X선 장치의 제작 및 평가)

  • Han, Dong-Kyoon;Jung, Jae-Eun;Choi, Jun-Gu;Seoun, Youl-Hun;Ko, Shin-Gwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.413-419
    • /
    • 2011
  • Diagnosis X-ray equipment localized at 1950's but it is developed suddenly at 1960's with demand together. Manufacture of Diagnostic X-ray equipment is controled by the KS regulation and the Ministry of Health and Welfare because of hazardous element etc. exposure by radiation. Most of diagnostic X-ray equipment ware single phase and three phase full-wave rectification but from 1980's it transforms it was exchanged in inverter type X-ray equipment. Inverter type X-ray equipment produces approximately 50~80% more average photon intensity then single phase full-wave rectification and the accuracy is high. But from a clinic it dose not use because expensive therefor the efficiency improvement of single phase full-wave rectification is necessary. We produced single phase full-wave rectification X-ray equipment control unit, high tension transformer, filament heating transformer, rectification circuit, high tension cable and others and evaluated efficiency, in result which is excellent compare with Rule of Safety Management and KS regulation.

The Propriety of Portable Digital X-RAY Equipment for Emergency Medical Services (델파이 기법을 이용한 응급의료에서의 휴대용 디지털 X-ray 발생장치의 적절성)

  • Cho, Dong-Heon;Gu, Kyung-Wan;Yang, Hae-Sool;Jo, Jean-Man;Han, Man-Seok;Lee, Mi-Ok
    • The Korean Journal of Emergency Medical Services
    • /
    • v.9 no.1
    • /
    • pp.15-23
    • /
    • 2005
  • The purpose of this study is to analyze the propriety of portable digital X-ray Equipment for Emergency Medical Services in Daejon Emergency Medical Center in Korea. The major instruments of this study were Korean Self-Analysis Opinionnaire, Questionnaire contains 35 items which measure emergency medical personal opnions. To take the analysis of data, the total of 92 persons were investigated in Medical Information Center in Daejon Metropolitan City from 2005. 20. April to 2004. 25. May. The data were analyzed by the path analysis SPSS program. First, portable X-RAY equipment is needed to apply it to emergency. Second, it should have small and light structure compared with old equipments and have high voltage generator unit for X-RAY using inverter. Third, it should be able to send the shot data that is digital detector type without film to doctors in emergency center.

  • PDF

Development of a Unified Research Platform for Plug-In Hybrid Electrical Vehicle Integration Analysis Utilizing the Power Hardware-in-the-Loop Concept

  • Edrington, Chris S.;Vodyakho, Oleg;Hacker, Brian A.
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.471-478
    • /
    • 2011
  • This paper addresses the establishment of a kVA-range plug-in hybrid electrical vehicle (PHEV) integration test platform and associated issues. Advancements in battery and power electronic technology, hybrid vehicles are becoming increasingly dependent on the electrical energy provided by the batteries. Minimal or no support by the internal combustion engine may result in the vehicle being occasionally unable to recharge the batteries during highly dynamic driving that occurs in urban areas. The inability to sustain its own energy source creates a situation where the vehicle must connect to the electrical grid in order to recharge its batteries. The effects of a large penetration of electric vehicles connected into the grid are still relatively unknown. This paper presents a novel methodology that will be utilized to study the effects of PHEV charging at the sub-transmission level. The proposed test platform utilizes the power hardware-in-the-loop (PHIL) concept in conjunction with high-fidelity PHEV energy system simulation models. The battery, in particular, is simulated utilizing a real-time digital simulator ($RTDS^{TM}$) which generates appropriate control commands to a power electronics-based voltage amplifier that interfaces via a LC-LC-type filter to a power grid. In addition, the PHEV impact is evaluated via another power electronic converter controlled through $dSPACE^{TM}$, a rapid control systems prototyping software.

Development of control system for complex microbial incubator (복합 미생물 배양기의 제어시스템 개발)

  • Hong-Jik Kim;Won-Bog Lee;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.122-126
    • /
    • 2023
  • In this paper, a control system for a complex microbial incubator was proposed. The proposed control system consists of a control unit, a communication unit, a power supply unit, and a control system of the complex microbial incubator. The controller of the complex microbial incubator is designed and manufactured to convert analog signals and digital signals, and control signals of sensors such as displays using LCD panels, water level sensors, temperature sensors, and pH concentration sensors. The water level sensor used is designed and manufactured to enable accurate water level measurement by using the IR laser method with excellent linearity in order to solve the problem that existing water level sensors are difficult to measure due to foreign substances such as bubbles. The temperature sensor is designed and used so that it has high accuracy and no cumulative resistance error by measuring using the thermal resistance principle. The communication unit consists of two LAN ports and one RS-232 port, and is designed and manufactured to transmit signals such as LCD panel, PCT panel, and load cell controller used in the complex microbial incubator to the control unit. The power supply unit is designed and manufactured to supply power by configuring it with three voltage supply terminals such as 24V, 12V and 5V so that the control unit and communication unit can operate smoothly. The control system of the complex microbial incubator uses PLC to control sensor values such as pH concentration sensor, temperature sensor, and water level sensor, and the operation of circulation pump, circulation valve, rotary pump, and inverter load cell used for cultivation. In order to evaluate the performance of the control system of the proposed complex microbial incubator, the result of the experiment conducted by the accredited certification body showed that the range of water level measurement sensitivity was -0.41mm~1.59mm, and the range of change in water temperature was ±0.41℃, which is currently commercially available. It was confirmed that the product operates with better performance than the performance of the products. Therefore, the effectiveness of the control system of the complex microbial incubator proposed in this paper was demonstrated.

A study on the PWM(pulse witdh modulation) current source Inverter with utility (태양광발전 연계 시스템에 의한 PWM 전류형 인버어터에 관한 연구)

  • Hwang, Lak-Hoon;Choi, Ho-Kyu;Sin, Yang-Ho;Lee, Chun-Sang;Kim, Ju-Rae;Jo, Sang-Rou;Jo, Moon-Taeck
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1020-1022
    • /
    • 2001
  • because the output of solar cell is direct, it is necessary to install D/A converter system for A.C load, and in case of driving utility line system, it is possible to drive system relation when the system supplies sinusodal current ant voltage having unit power factor. As the characteristics of the soar cell output the is influenced by dailysunight charge, for more electric power it is essential to control the direction toward the san so that the driving point of solar cell can always operate near maximum output point. PWM modulation device among electric power converters must have stable modulation at anytime when it includes noise-factors such as noise-wave and noises on electric voltage wave, a synchronous signal system. In dealing with synchronous signal for control and control signal by microprocessor, it is necessary to compensate it because there is time difference between sample paint and carrier wave. On this papers, single phase PWM current type invertor controled the solar cell having typical voltage dropping character has optimun short current in short, reduces D.C reactance, composes controller for modulation and keeps lower harmonic and high power factor keeping maximum output of solar cell according daily sunlight charge variation.

  • PDF

Smart Monitoring System to Improve Solar Power System Efficiency (태양광 발전시스템 효율향상을 위한 스마트 모니터링 시스템)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.219-224
    • /
    • 2019
  • The number of solar power installation companies including domestic small scale (50kW or less) is increasing rapidly, but the efficient operation system and management are insufficient. Therefore, a new type of operating system is needed as a maintenance management aspect to maximize the generation amount in the current state rather than the additional function which causes the increase of the generation cost. In this paper, we utilize Big Data and sensor network to maximize the operating efficiency of solar power plant and analyze the expert system to develop power generation prediction technology, module unit fault detection technology, life prediction of inverter components and report technology, maintenance optimization And to develop a smart monitoring system that enables optimal operation of photovoltaic power plants such as development of algorithms and economic analysis.

Design of a Prototype System for Graft-Taking Enhancement of Grafted Seedlings Using Artificial Lighting - Effect of air current speed on the distribution of air temperature and relative humidity in a graft-taking enhancement system (인공광을 이용한 접목표 활착촉진 시스템의 시작품 설계 - 활착촉진 시스템 내의 기온과 상대습도 분포에 미치는 기류속도의 효과)

  • 김용현
    • Journal of Biosystems Engineering
    • /
    • v.25 no.3
    • /
    • pp.213-220
    • /
    • 2000
  • Grafting of fruit-bearing vegetables has been widely used to increase the resistance to soil-borne diseases, to increase the tolerance to low temperature or to soil salinity, to increase the plant vigor, and to extend the duration of economic harvest time. After grafting, it is important to control the environment around grafted seedlings for the robust joining of a scion and rootstock. Usually the shading materials and plastic films are used to keep the high relative humidity and low light intensity in greenhouse or tunnel. It is quite difficult to optimally control the environment for healing and acclimation of grafted seedlings under natural light. So the farmers or growers rely on their experience for the production of grafted seedling with high quality. If artificial light is used as a lighting source for graft-taking of grafted seedlings, the light intensity and photoperiod can be easily controlled. The purpose of this study was to develop a prototype system for the graft-taking enhancement of grafted seedlings using artificial lighting and to investigate the effect of air current speed on the distribution of air temperature and relative humidity in a graft-taking enhancement system. A prototype graft-taking system was consisted by polyurethane panels, air-conditioning unit, system controller and lighting unit. Three band fluorescent lamps (FL20SEX-D/18, Kumho Electric, Inc.) were used as a lighting source. Anemometer (Climomaster 6521, KANOMAX), T-type thermocouples and humidity sensors (CHS-UPS, TDK) were used to measure the air current speed, air temperature and relative humidity in a graft-taking system. In this system, air flow acted as a driving force for the diffusion of heat and water vapor. Air current speed, air temperature and relative humidity controlled by a programmable logic controller (UP750, Yokogawa Electric Co) and an inverter (MOSCON-G3, SAMSUNG) had an even distribution. Distribution of air temperature and relative humidity in a graft-taking enhancement system was fairly affected by air current speed. Air current speed higher than 0.1m/s was required to obtain the even distribution of environmental factors in this system. At low air current speed of 0.1m/s, the evapotranspiration rate of grafted seedlings would be suppressed and thus graft-taking would be enhanced. This system could be used to investigate the effects of air temperature, relative humidity, air current speed and light intensity on the evaportranspiration rate of grafted seedlings.

  • PDF

A Study to Improve the DC Output Waveforms of AFE Three-Phase PWM Rectifiers (AFE 방식 3상 PWM 정류기의 직류 출력파형 개선에 관한 연구)

  • Jeon, Hyeon-Min;Yoon, Kyoung-Kuk;Kim, Jong-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.6
    • /
    • pp.739-745
    • /
    • 2017
  • Many studies have been conducted to reduce environmental pollution by ships and reduce fuel consumption. As part of this effort, research on power conversion systems through DC distribution systems that link renewable energy with conventional power grids has been pursued as well. The diode rectifiers currently used include many lower harmonics in the input current of the load and distort supply voltage to lower the power quality of the whole system. This distortion of voltage waveforms causes the malfunctions of generators, load devices and inverter pole switching elements, resulting in a large number of switching losses. In this paper, a controller is presented to improve DC output waveforms, the input Power Factor and the THD of an AFE type PWM rectifier used for PLL. DC output voltage waveforms have been improved, and the input Power Factor can now be matched to the unit power factor. In addition, the THD of the input power supply has been proven by simulation to comply with the requirements of IEEE Std514-2014.