• Title/Summary/Keyword: inverted L antenna

Search Result 30, Processing Time 0.024 seconds

Compact Mobile Quad-Band Slot Antenna Design for GPS L1, WiMAX, and WLAN Applications

  • Piao, Haiyan;Jin, Yunnan;Tak, Jinpil;Choi, Jaehoon
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.2
    • /
    • pp.57-64
    • /
    • 2017
  • In this paper, an asymmetric compact multiband slot antenna is proposed for global positioning system (GPS), worldwide interoperability for microwave access (WiMAX), and wireless area network (WLAN) applications. The top plane, a ground is composed of a rectangular slot with a trapezoidal-like stub, an inverted U-shaped slot at the right side of the rectangular slot, an inverted L-shaped slot at the left side of the rectangular slot, and three stubs. The proposed antenna is fed by an asymmetric cross-parasitic strip on the bottom plane. By properly designing the slots and stubs, four resonant frequency bands are achieved with -10 dB reflection coefficient bandwidths of 50 MHz, 400 MHz, 390 MHz, and 830 MHz in the 1.57 GHz GPS band, 2.4 GHz WLAN band, 3.5 GHz WiMAX band, and 5.5 GHz WLAN bands, respectively. The antenna has a total compact size of $13mm{\times}32mm{\times}0.8mm$. Simulated and measured results indicate that the proposed antenna has sufficient bandwidth and good radiation performance in each band.

Design and Fabrication of a CPW-Fed Monopole Antenna using Inverted L type DGS Structures (역L형 DGS를 이용한 CPW급전 모노폴안테나 설계 및 제작)

  • Ryu, Cheong-Ho;Jung, Chang-Gyun;Kim, Jeong-Geun
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.303-306
    • /
    • 2005
  • In this paper, a CPW-fed monopole antenna using inverted L-type DGS structures is proposed and investigated experimentally. The proposed antenna is fabricated into FR4 substrate with dielectric constant($\varepsilon$r=4.5). Measured results show that the impedance bandwidth, determined from 10-dB return loss, for frequencies between 5.7250Hz-5.825CHz under the condition of VSWR$\leqq$2 is about 540MHg.

  • PDF

Design of Broadband PIFA for PCS and IMT-2000 (PCS 및 IMT-2000용 광대역 PIFA 설계)

  • Lee, Jae-Hyang;Kim, Nam;Park, Ju-Derk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.3
    • /
    • pp.242-250
    • /
    • 2004
  • In this thesis, a new broadband PIFA(Planar Inverted-F Antenna) for PCS and IMP-2000 applications is designed. The dual-L antenna structure is adopted in order to improve the characteristics of PIFA which usually has a narrow band. The height of the antenna is fixed 6 mm considering terminal's thickness and the structure is deformed into the folded radiation patches to minimize the size of the antenna. The bandwidth of a realized antenna is 1.66∼2.35 ㎓(34.5 %) fur return loss below -10 ㏈ which contain the required bandwidth of PCS and IMT-2000. And Monopole antenna with λ/4 length is designed and compared with dual-L with folded patch in SAR. 1 g and 10 g averaged peak SAR of PIFA are about 25.7 %, 30.3 % lower than those of monopole antenna respectively.

Design of the Wideband Notched Compact UWB Antenna (넓은 대역폭이 소거된 소형 UWB 안테나 설계)

  • Kim, Cheol-Bok;Lim, Jung-Sup;Lee, Ho-Sang;Jang, Jae-Sam;Jung, Young-Ho;Jo, Dong-Ki;Lee, Mun-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.9
    • /
    • pp.54-62
    • /
    • 2007
  • In this paper, a novel wideband notched compact UWB antenna is designed to satisfy the licensed UWB frequency bandwidth($3.1{\sim}4.8$ GHz, $7.1{\sim}10.2$ GHz) by symmetrically arranging two adjacent sectorial loop antennas. The wideband($4.8{\sim}7.1$ GHz) notch can be obtained by inserting the inverted-L shaped slits on the patch. The designed UWB antenna has return loss lower than -10dB at 3.1 GHz and over, group delay value lower than 1 ns and the linear phase property. The optimized UWB antenna inserted the inverted-L shaped slits has return loss great than -10dB, 5 ns of group delay, nonlinear phase and decreased gain properties over the frequency band, 4.8 GHz to 7.1 GHz.

A Design of Dual-band Microstrip Antenna Loading Inverted-L-shaped Parasitic Elements Vertically at Radiation Apertures for GPS Applications (방사개구면에 역 L형 기생소자를 세운 GPS용 이중대역 마이크로스트립 안테나 설계)

  • Choi, Yoon-Seon;Woo, Jong-Myung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.5
    • /
    • pp.38-43
    • /
    • 2015
  • In this paper, we present novel dual-band microstrip antennas using inverted-L-shaped parasitic elements vertically at radiation apertures for GPS L1(1.575 GHz) and L2(1.227 GHz) bands. For making dual band which has large interval, the inverted-L-shaped parasitic element was loaded at the radiation aperture of a half-wavelength patch antenna(GPS L1) in opposite direction of the feeding point for receiving the low frequency(GPS L2). The low frequency occurs by perturbation and coupling between the patch and parasitic. Next, due to use circular polarizations at the GPS applications, two inverted-L-shaped parasitic elements were loaded at radiation apertures of each polarizations and the feeding point was moved at diagonal part of the patch. The dimensions of the designed circularly polarized antenna were $88.5{\times}79{\times}10.4mm^3$ ($0.36{\lambda}L{\times}0.32{\lambda}L{\times}0.04{\lambda}L$, ${\lambda}L$ is the free-space wavelength at 1.227 GHz). Measured -10 dB bandwidths were 116.3 MHz(7.4%) and 64.3 MHz(5.2%) at GPS L1 and L2 bands, respectively. All of these cover the respective required system bandwidths. The measured 3 dB axial ratio bandwidths were 11.7 MHz(0.74%) and 14 MHz(1.14%), respectively. Within each of the designed bands, broadside radiation patterns were observed.

Compact CPW-Fed Antenna with Triple Folded Patch for WLAN Applications (WLAN 시스템에 적용 가능한 삼중 폴디드 패치를 가진 CPW 급전 소형 안테나)

  • Choi, In-Tae;Shin, Ho-Sub
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.9
    • /
    • pp.777-782
    • /
    • 2015
  • In this paper, the compact CPW-fed antenna with triple folded patch for dual-band WLAN applications is proposed. As the conventional double inverted-L antenna is changed into the C-shaped patch and double inverted-L antenna, the antenna overcomes the narrow-band characteristics according to the miniaturization of the antenna. The proposed antenna with the size of only $16.5mm{\times}29.5mm{\times}1.0mm$ is designed and fabricated by optimized parameters to be operated at 2.4 GHz band and 5 GHz band. The antenna is fabricated into FR-4 substrate with thickness of 1.0 mm. We confirm that it is operated as antenna for WLAN applications by obtaining the measured return loss level of < -10 dB at dual-band.

A Broadband Microstrip Array Antenna for 3G Smart Antenna System Testbed

  • Rashid, Zainol Abidin Abdul;Islam, Mohammad Tariqul;Jiunn, Ng Kok
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.5 no.1
    • /
    • pp.43-59
    • /
    • 2006
  • A compact and broadband $4\times1$ array antenna was developed for 3G smart antenna system testbed. The $4\times1$ uniform linear away antenna was designed to operate at 1.885 to 2.2GHz with a total bandwidth of 315MHz. The array elements were based on the novel broadband L-probe fed inverted hybrid E-H (LIEH) shaped microstrip patch, which offers 22% size reduction to the conventional rectangular microstrip patch antenna. For steering the antenna beam, a commercial variable attenuator (KAT1D04SA002), a variable phase shifter (KPH350SC00) with four units each, and the corporate 4-ways Wilkinson power divider which was fabricated in-house were integrated to form the beamforming feed network. The developed antenna has an impedance bandwidth of 17.32% $(VSWR\leq1.5)$, 21.78% $(VSWR\leq2)$ with respect to center frequency 2.02GHz and with an achievable gain of 11.9dBi. The design antenna offer a broadband, compact and mobile solution for a 3G smart antenna testbed to fully characterized the IMT-2000 radio specifications and system performances.

  • PDF

A Broadband Microstrip Array Antenna for 3G Smart Antenna System Testbed

  • Rashid, Zainol Abidin Abdul;Islam, Mohammad Tariqul;Jiunn, Ng Kok
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.7 no.1
    • /
    • pp.41-58
    • /
    • 2007
  • A compact and broadband $4{\times}1$ array antenna was developed for 3G smart antenna system testbed. The $4{\times}1$ uniform linear array antenna was designed to operate at 1.885 to 2.2GHz with a total bandwidth of 315MHz. The array elements were based on the novel broadband L-probe fed inverted hybrid E-H (LIEH) shaped microstrip patch, which offers 22% size reduction to the conventional rectangular microstrip patch antenna. For steering the antenna beam, a commercial variable attenuator (KAT1D04SA002), a variable phase shifter (KPH350SC00) with four units each, and the corporate 4-ways Wilkinson power divider which was fabricated in-house were integrated to form the beamforming feed network. The developed antenna has an impedance bandwidth of 17.32% ($VSWR{\leq}1.5$), 21.78% ($VSWR{\leq}2$) with respect to center frequency 2.02GHz and with an achievable gain of 11.9dBi. The design antenna offer a broadband, compact and mobile solution for a 3G smart antenna testbed to fully characterized the IMT-2000 radio specifications and system performances.

  • PDF

Design of Microstrip-fed Dual Band Monopole Antenna for WLAN (마이크로스트립 급전 무선랜용 이중대역 모노폴 안테나 설계)

  • Nam, Ju-Yeol;Lee, Young-Soon
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.490-495
    • /
    • 2016
  • In the present study, a microstrip-fed monopole antenna is proposed for wireless local area network (WLAN) operations which cover dual band of 2.4 GHz (2.4 ~ 2.484 GHz) and 5 GHz (5.15 ~ 5.825 GHz). In order to obtain its compact structure and good omnidirectional radiation patterns, a modified inverted L-shaped slot separated from ground for impedance matching in 5 GHz band is etched on 2.4 GHz printed monopole antenna. The proposed antenna is designed and fabricated on a FR4 substrate with dielectric constant 4.3, thickness of 1.6 mm, and size of $30{\times}45mm^2$. The measured impedance bandwidths (${\mid}S_{11}{\mid}{\leq}-10dB$) of fabricated antenna are 270 MHz (2.22 ~ 2.48 GHz) in 2.4 GHz band and 890 MHz (5.08 ~ 5.97 GHz) in 5 GHz band respectively. In particular, high gain of more than about 4 dBi and good omnidirectional radiation patterns have been observed over the entire frequency band of interest.

A Design of Dual-band Microstrip Antennas using Stacked Inverted-L-shaped Parasitic Elements for GPS Applications (GPS용 역 L형 기생소자를 이용한 이중대역 마이크로스트립 안테나 설계)

  • Kim, Jun-Won;Woo, Jong-Myung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.3
    • /
    • pp.31-37
    • /
    • 2015
  • In this paper, newly proposed dual-band microstrip antennas using stacked inverted-L-shaped parasitic elements are presented for GPS $L_1(1.575GHz)$ and $L_2(1.227GHz)$ bands. For making dual band which has large interval, ${\lambda}/4$($L_1$ band) inverted-L-shaped parasitic elements were stacked at both side of radiation apertures on the half-wavelength($L_2$ band) patch antennas. The resonance in the parasitic elements occurs through coupling to the patch. Next, due to using circular polarization at GPS, ${\lambda}/4$($L_1$ band) inverted-L-shaped parasitic elements was stacked using sequential rotation technique on the patch and both side of the diagonal corners of the antenna were eliminated to make dual-band circular polarization. The designed circular polarized antenna's dimensions are $0.43{\lambda}L{\times}0.43{\lambda}L{\times}0.06{\lambda}L$ (${\lambda}L$ is the free-space wavelength at 1.227 GHz). Measured -10 dB bandwidths was 120 MHz(7.6%) and 82.5 MHz(6.7%) at GPS $L_1$ and $L_2$ bands. and 3 dB axial ration bandwidths are 172 MHz(10.9%) and 25 MHz(2.03%), respectively. All of these cover the respective required system bandwidths. Within each of the designed bands, broadside radiation patterns were observed.