• Title/Summary/Keyword: inverse statistics

Search Result 234, Processing Time 0.021 seconds

Bayesian Estimators Using Record Statistics of Exponentiated Inverse Weibull Distribution

  • Kim, Yong-Ku;Seo, Jung-In;Kang, Suk-Bok
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.3
    • /
    • pp.479-493
    • /
    • 2012
  • The inverse Weibull distribution(IWD) is a complementary Weibull distribution and plays an important role in many application areas. In this paper, we develop a Bayesian estimator in the context of record statistics values from the exponentiated inverse Weibull distribution(EIWD). We obtained Bayesian estimators through the squared error loss function (quadratic loss) and LINEX loss function. This is done with respect to the conjugate priors for shape and scale parameters. The results may be of interest especially when only record values are stored.

Iterative projection of sliced inverse regression with fused approach

  • Han, Hyoseon;Cho, Youyoung;Yoo, Jae Keun
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.2
    • /
    • pp.205-215
    • /
    • 2021
  • Sufficient dimension reduction is useful dimension reduction tool in regression, and sliced inverse regression (Li, 1991) is one of the most popular sufficient dimension reduction methodologies. In spite of its popularity, it is known to be sensitive to the number of slices. To overcome this shortcoming, the so-called fused sliced inverse regression is proposed by Cook and Zhang (2014). Unfortunately, the two existing methods do not have the direction application to large p-small n regression, in which the dimension reduction is desperately needed. In this paper, we newly propose seeded sliced inverse regression and seeded fused sliced inverse regression to overcome this deficit by adopting iterative projection approach (Cook et al., 2007). Numerical studies are presented to study their asymptotic estimation behaviors, and real data analysis confirms their practical usefulness in high-dimensional data analysis.

Nonparametric Bayesian estimation on the exponentiated inverse Weibull distribution with record values

  • Seo, Jung In;Kim, Yongku
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.3
    • /
    • pp.611-622
    • /
    • 2014
  • The inverse Weibull distribution (IWD) is the complementary Weibull distribution and plays an important role in many application areas. In Bayesian analysis, Soland's method can be considered to avoid computational complexities. One limitation of this approach is that parameters of interest are restricted to a finite number of values. This paper introduce nonparametric Bayesian estimator in the context of record statistics values from the exponentiated inverse Weibull distribution (EIWD). In stead of Soland's conjugate piror, stick-breaking prior is considered and the corresponding Bayesian estimators under the squared error loss function (quadratic loss) and LINEX loss function are obtained and compared with other estimators. The results may be of interest especially when only record values are stored.

Likelihood Based Confidence Intervals for the Common Scale Parameter in the Inverse Gaussian Distributions

  • Lee, Woo-Dong;Cho, Kil-Ho;Cha, Young-Joon;Ko, Jung-Hwan
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.3
    • /
    • pp.963-972
    • /
    • 2006
  • This paper focuses on the likelihood based confidence intervals for two inverse gaussian distributions when the parameter of interest is common scale parameter. Confidence intervals based on signed loglikelihood ratio statistic and modified signed loglikelihood ratio statistics will be compared in small sample through an illustrative simulation study.

  • PDF

The G-Drazin Inverse of an Operator Matrix over Banach Spaces

  • Farzaneh Tayebi;Nahid Ashrafi;Rahman Bahmani;Marjan Sheibani Abdolyousefi
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.2
    • /
    • pp.205-218
    • /
    • 2024
  • Let 𝒜 be a Banach algebra. An element a ∈ 𝒜 has generalized Drazin inverse if there exists b ∈ 𝒜 such that b = bab, ab = ba, a - a2b ∈ 𝒜qnil. New additive results for the generalized Drazin inverse of an operator over a Banach space are presented. we extend the main results of a paper of Shakoor, Yang and Ali from 2013 and of Wang, Huang and Chen from 2017. Appling these results to 2×2 operator matrices we also generalize results of a paper of Deng, Cvetković-Ilić and Wei from 2010.

Goodness-of-fit tests for the inverse Weibull or extreme value distribution based on multiply type-II censored samples

  • Kang, Suk-Bok;Han, Jun-Tae;Seo, Yeon-Ju;Jeong, Jina
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.4
    • /
    • pp.903-914
    • /
    • 2014
  • The inverse Weibull distribution has been proposed as a model in the analysis of life testing data. Also, inverse Weibull distribution has been recently derived as a suitable model to describe degradation phenomena of mechanical components such as the dynamic components (pistons, crankshaft, etc.) of diesel engines. In this paper, we derive the approximate maximum likelihood estimators of the scale parameter and the shape parameter in the inverse Weibull distribution under multiply type-II censoring. We also develop four modified empirical distribution function (EDF) type tests for the inverse Weibull or extreme value distribution based on multiply type-II censored samples. We also propose modified normalized sample Lorenz curve plot and new test statistic.

ON TESTING THE EQUALITY OF THE COEFFICIENTS OF VARIATION IN TWO INVERSE GAUSSIAN POPULATIONS

  • Choi, Byung-Jin;Kim, Kee-Young
    • Journal of the Korean Statistical Society
    • /
    • v.32 no.2
    • /
    • pp.93-101
    • /
    • 2003
  • This paper deals with testing the equality of the coefficients of variation in two inverse Gaussian populations. The likelihood ratio, Lagrange-multiplier and Wald tests are presented. Monte-Carlo simulations are performed to compare the powers of these tests. In a simulation study, the likelihood ratio test appears to be consistently more powerful than the Lagrange-multiplier and Wald tests when sample size is small. The powers of all the tests tend to be similar when sample size increases.

Minimum Variance Unbiased Estimation for the Maximum Entropy of the Transformed Inverse Gaussian Random Variable by Y=X-1/2

  • Choi, Byung-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.3
    • /
    • pp.657-667
    • /
    • 2006
  • The concept of entropy, introduced in communication theory by Shannon (1948) as a measure of uncertainty, is of prime interest in information-theoretic statistics. This paper considers the minimum variance unbiased estimation for the maximum entropy of the transformed inverse Gaussian random variable by $Y=X^{-1/2}$. The properties of the derived UMVU estimator is investigated.

Maximum Likelihood Estimator in Two Inverse Gaussian Populatoins with Unknown Common Coefficient of Variation

  • Park, Byungjin;Kim, Keeyoung
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.1
    • /
    • pp.99-113
    • /
    • 2001
  • This paper deals with the problem of estimating the means in two inverse Gaussian populations with equal but unknown coefficient of variation. The maximum likelihood estimators are derived by solving a cubic equation and their asymptotic variances are presented for comparative purpose. Monte-Carlo simulation is conducted to investigate the efficiency of the estimators relative to the sample means over a wide range of values for the sample size and the coefficient of variation. The effect on this efficiency under the departure from the assumption of common coefficient of variation is also studied.

  • PDF