• Title/Summary/Keyword: inverse neural network

Search Result 207, Processing Time 0.025 seconds

Development of the Revised Self-Organizing Neural Network for Robot Manipulator Control (로봇 메니퓰레이터 제어를 위한 개조된 자기조직화 신경망 개발)

  • Koo, Tae-Hoon;Rhee, Jong-Tae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.3
    • /
    • pp.382-392
    • /
    • 1999
  • Industrial robots have increased in both the number and applications in today's material handling systems. However, traditional approaches to robot controling have had limited success in complicated environment, especially for real time applications. One of the main reasons for this is that most traditional methods use a set of kinematic equations to figure out the physical environment of the robot. In this paper, a neural network model to solve robot manipulator's inverse kinematics problem is suggested. It is composed of two Self-Organizing Feature Maps by which the workspace of robot environment and the joint space of robot manipulator is inter-linked to enable the learning of the inverse kinematic relationship between workspace and joint space. The proposed model has been simulated with two robot manipulators, one, consisting of 2 links in 2-dimensional workspace and the other, consisting of 3 links in 2-dimensional workspace, and the performance has been tested by accuracy of the manipulator's positioning and the response time.

  • PDF

Source Localization Techniques for Magnetoencephalography (MEG)

  • Kwang-Ok An;Chang-Hwan Im;Hyun-Kyo Jung;Yong-Ho Lee;Hyuk-Chan Kwon
    • KIEE International Transaction on Systems and Control
    • /
    • v.2D no.2
    • /
    • pp.53-58
    • /
    • 2002
  • In this paper, various aspects in magnetoencephalography (MEG) source localization are studied. To minimize the errors in experimental data, an approximation technique using a polynomial function is proposed. The simulation shows that the proposed technique yields more accurate results. To improve the convergence characteristics in the optimization algorithm, a hybrid algorithm of evolution strategy and sensitivity analysis is applied to the neuromagnetic inverse problem. The effectiveness of the hybrid algorithm is verified by comparison with conventional algorithms. In addition, an artificial neural network (ANN) is applied to find an initial source location quickly and accurately. The simulation indicates that the proposed technique yields more accurate results effectively.

  • PDF

Real-time Image Transmission on the Internet Using Wavelet Transform and Neural Network (웨이블릿변환과 신경회로에 의한 칼라 동영상의 실시간 전송)

  • Kim, Jeong-Ha;Kim, Hyeong-Bae;Sin, Cheol-Hong;Lee, Hak-No;Nam, Bu-Hui
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.203-206
    • /
    • 2003
  • In this paper we discuss an algorithm for a real time transmission of moving color images on the TCP/IP network using wavelet transform and neural network. The image frames received from the camera are two-level wavelet-transformed in the server, and are transmitted to the client on the network. Then, the client performs the inverse wavelet-fransform using only the received pieces of each image frame within the prescribed time limit to display the moving images. When the TCP/IP network is busy, only a fraction of each image frame will be delivered. When the line is free, the whole frame of each image will be transferred to the client. The receiver warns the sender of the condition of traffic congestion in the network by sending a special short frame for this specific purpose. The sender can respond to this condition of warning by simply reducing the data rate which is adjusted by a back-propagation neural network. In this way we can send a stream of moving images adaptively adjusting to the network traffic condition.

  • PDF

A non-model based robot manipulator control using neural networks (무모형 로봇을 위한 신경 회로망 제어 방식)

  • Jung, Seul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.698-701
    • /
    • 1996
  • A novel neural network control scheme is proposed to identify the inverse dynamic model of robot manipulator and to compensate for uncertainties in robot dynamics. The proposed controller is called reference compensation technique(RCT) by compensating at reference input trajectory. The proposed RCT scheme has many benefits due to the differences in compensating position and learning algorithm. Since the compensation is done outside the plant it can be applied to many control systems without modifying the inside controller. It performs well with low controller gain because the operating range of input values is small and the output of the neural network controller is amplified through the controller gain. The back-propagation algorithm is used to train and simulations of three link robot manipulator are carried out to prove the proposed controller's performances.

  • PDF

Blind Neural Equalizer using Higher-Order Statistics

  • Lee, Jung-Sik
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.174-178
    • /
    • 2002
  • This paper discusses a blind equalization technique for FIR channel system, that might be minimum phase or not, in digital communication. The proposed techniques consist of two parts. One is to estimate the original channel coefficients based on fourth-order cumulants of the channel output, the other is to employ RBF neural network to model an inverse system fur the original channel. Here, the estimated channel is used as a reference system to train the RBF. The proposed RBF equalizer provides fast and easy teaming, due to the structural efficiency and excellent recognition-capability of R3F neural network. Throughout the simulation studies, it was found that the proposed blind RBF equalizer performed favorably better than the blind MLP equalizer, while requiring the relatively smaller computation steps in tranining.

A Design of the PID controller Using Wavelet Neural network (웨이브렛 신경망을 이용한 PID제어기의 설계)

  • 하홍곤
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.1
    • /
    • pp.74-79
    • /
    • 2003
  • In this paper, the PID controller is constructed with a neural network and wavelet function. And the wavelet neural PID controller is adapted by choosing the values of the dilation and translation parameter of the wavelet function. Weights are adjusted by the inverse propagation algolithm. Applying this method to the position control system, its usefulness is verified from the results of experiment.

Control method for DC Motor based on Neural Networks (인공신경회로망에 기초한 직류모터제어)

  • Park, Jin-Hyun;Choi, Young-Kiu;Park, June-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.248-250
    • /
    • 1993
  • In this paper, we assume that the dynamics of DC motor and nonlinear load are unknown. We train the inverse dynamic model of DC motor and nonlinear load using the neural network and construct speed control system based on the traind dynamic model and current control mode. Speed prediction scheme using neural network is also proposed the alleviate the time delay effect caused by the computation time of neural network. Simulation results show good performances of the control system. Finally, hardware configuration of the control system is outlined.

  • PDF

Design and Implementation of Recurrent Time Delayed Neural Network Controller Using Fuzzy Compensator (퍼지 보상기를 사용한 리커런트 시간지연 신경망 제어기 설계 및 구현)

  • Lee, Sang-Yun;Shin, Woo-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.334-341
    • /
    • 2003
  • In this paper, we proposed a recurrent time delayed neural network(RTDNN) controller which compensate a output of neural network controller. Even if learn by neural network controller, it can occur an bad results from disturbance or load variations. So in order to adjust above case, we used the fuzzy compensator to get an expected results. And the weight of main neural network can be changed with the result of learning a inverse model neural network of plant, so a expected dynamic characteristics of plant can be got. As the results of simulation through the second order plant, we confirmed that the proposed recurrent time delayed neural network controller get a good response compare with a time delayed neural network(TDU) controller. We implemented the controller using the DSP processor and applied in a hydraulic servo system. And then we observed an experimental results.