• Title/Summary/Keyword: inverse learning

Search Result 205, Processing Time 0.053 seconds

Precision Position Control System of Piezoelectric Actuator Using Inverse Hysteresis Modeling and Error Learning Method (역 히스테리시스 모델링과 오차학습을 이용한 압전구동기의 초정밀 위치제어)

  • 김형석;이수희;정해철;이병룡;안경관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.383-388
    • /
    • 2004
  • A piezoelectric actuator yields hysteresis effect due to its composed ferroelectric. Hysteresis nonlinearty is neglected when a piezoelectric actuator moves with short stroke. However when it moves with long stroke and high frequency, the hysteresis nonlinearty can not be neglected. The hysteresis nonlinearty of piezoelectric actuator degrades the control performance in precision position control. In this paper, in order to improve the control performance of piezoelectric actuator, an inverse modeling scheme is proposed to compensate the hysteresis nonlinearty problem. And feedforward - feedback controller is proposed to give a good tracking performance. The Feedforward controller is inverse hysteresis model, Nueral network and PID control is used as a feedback controller. To show the feasibility of the proposed controller and hysteresis modeling, some experiments have been carried out. It is concluded that the proposed control scheme gives good tracking performance

  • PDF

A Study on the Design of Optimal Variable Structure Controller using Multilayer Neural Inverse Identifier (신경 회로망을 이용한 최적 가변구조 제어기의 설계에 관한 연구)

  • 이민호;최병재;이수영;박철훈;김병국
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.12
    • /
    • pp.1670-1679
    • /
    • 1995
  • In this paper, an optimal variable structure controller with a multilayer neural inverse identifier is proposed. A multilayer neural network with error back propagation learning algorithm is used for construction the neural inverse identifier which is an observer of the external disturbances and the parameter variations of the system. The variable structure controller with the multilayer neural inverse identifier not only needs a small part of a priori knowledge of the bounds of external disturbances and parameter variations but also alleviates the chattering magnitude of the control input. Also, an optimal sliding line is designed by the optimal linear regulator technique and an integrator is introduced for solving the reaching phase problem. Computer simulation results show that the proposed approach gives the effective control results by reducing the chattering magnitude of control input.

  • PDF

A Study on the Inverse Calibration of Industrial Robot(AM1) Using Neural Networks (신경회로망을 이용한 산업용 로봇(AM1)의 역보정에 관한 연구)

  • 안인모
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.131-136
    • /
    • 1999
  • This paper proposes the robot inverse calibration method using a neural networks. A highorder networks called Pi-Sigma networks has been used. The Pi-Sigma networks uses linear summing units in the hidden layer and product unit in output layer. The inverse calibration model which compensates the difference of joint variables only between measuring value and analytic value about the desired pose(position, orientation) of a robot is proposed. The compensated values are determined by using the weights obtained from the learning process of the neural networks previously. To prove the reasonableness, the SCARA type direct drive robot(4-DOF) and anthropomorphic robot(6-DOF) are simulated. It shows that the proposed calibration method can reduce the errors of the joint variables from $\pm$2$^{\circ}$to $\pm$ 0.1$^{\circ}$.

  • PDF

Inverse Estimation of Surface Temperature Using the RBF Network (RBF Network 를 이용한 표면온도 역추정에 관한 연구)

  • Jung, Bup-Sung;Lee, Woo-Il
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1183-1188
    • /
    • 2004
  • The inverse heat conduction problem (IHCP) is a problem of estimating boundary condition from temperature measurement at one or more interior points. Neural networks are general information processing systems inspired by the connectionist theory of human brain. By properly training the network by the learning rule, the neural network method can handle many non-linear or other complex problems. In this work, neural network is applied to complicated inverse heat conduction problems. Efficiency of the procedure is enhanced by incorporating the radial basis functions (RBF). The RBF is trained faster than other neural network and can find smooth solution. In order to demonstrate the effectiveness of the current scheme, a typical one-dimensional IHCP is considered. At one surface, the temperature as well as the heat flux is known. The unknown temperature of interest is estimated on the other side of the slab. The results from the proposed method based on RBF neural network are compared with the conventional method.

  • PDF

The Robot Inverse Calibration Using a Pi-Sigma Neural Networks (Pi-Sigma 신경 회로망을 이용한 로봇의 역 보정)

  • Jeong, Jae Won;Kim, Soo Hyun;Kwak, Yoon Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.86-94
    • /
    • 1997
  • This paper proposes the robot inverse calibration method using a neural networks. A high-order networks called Pi-Sigma networks has been used. The Pi-Sigma networks uses linear summing units in the hidden layer and product unit in output layer. The inverse calibration model which compensates the diff- erence of joint variables only between measuring value and analytic value about the desired pose(position, orientation) of a robot is proposed. The compensated values are determined by using the weights obtained from the learning process of the neural networks previously. To prove the reasonableness, the SCARA type direct drive robot(4-DOF) and anthropomorphic robot(6-DOF) are simulated. It shows that the proposed calibration method can reduce the errors of the joint variables from .+-. 5 .deg. to .+-. 0.1 .deg. .

  • PDF

A Study on the PTP Motion of Robot Manipulators by Neural Networks (신경 회로망에 의한 로보트 매니퓰레이터의 PTP 운동에 관한 연구)

  • Kyung, Kye-Hyun;Ko, Myoung-Sam;Lee, Bum-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.679-684
    • /
    • 1989
  • In this paper, we describe the PTP notion of robot manipulators by neural networks. The PTP motion requires the inverse kinematic redline and the joint trajectory generation algorithm. We use the multi-layered Perceptron neural networks and the Error Back Propagation(EBP) learning rule for inverse kinematic problems. Varying the number of hidden layers and the neurons of each hidden layer, we investigate the performance of the neural networks. Increasing the number of learning sweeps, we also discuss the performance of the neural networks. We propose a method for solving the inverse kinematic problems by adding the error compensation neural networks(ECNN). And, we implement the neural networks proposed by Grossberg et al. for automatic trajectory generation and discuss the problems in detail. Applying the neural networks to the current trajectory generation problems, we can refute the computation time for trajectory generation.

  • PDF

An Study on the Analysis of Design Criteria for S-Box Based on Deep Learning (딥러닝 기반 S-Box 설계정보 분석 방법 연구)

  • Kim, Dong-hoon;Kim, Seonggyeom;Hong, Deukjo;Sung, Jaechul;Hong, Seokhie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.3
    • /
    • pp.337-347
    • /
    • 2020
  • In CRYPTO 2019, Gohr presents that Deep-learning can be used for cryptanalysis. In this paper, we verify whether Deep-learning can identify the structures of S-box. To this end, we conducted two experiments. First, we use DDT and LAT of S-boxes as the learning data, whose structure is one of mainly used S-box structures including Feistel, MISTY, SPN, and multiplicative inverse. Surprisingly, our Deep-learning algorithms can identify not only the structures but also the number of used rounds. The second application verifies the pseudo-randomness of and structures by increasing the nuber of rounds in each structure. Our Deep-learning algorithms outperform the theoretical distinguisher in terms of the number of rounds. In general, the design rationale of ciphers used for high level of confidentiality, such as for military purposes, tends to be concealed in order to interfere cryptanalysis. The methods presented in this paper show that Deep-learning can be utilized as a tool for analyzing such undisclosed design rationale.

신경회로망에 의한 로보트의 역 기구학 구현

  • 이경식;남광희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.144-148
    • /
    • 1989
  • We solve the inverse kinematics problems in robotics by employing a neural network. In the practical situation. it is not easy to obtain the exact inverse kinematics solution, since there are many unforeseen errors such as the shift of a robot base the link's bending, et c. Hence difficulties follow in the trajectory planning. With the neural network, it is possible to train the robot motion so that the robot follows the desired trajectory without errors even under the situation where the unexpected errors are involved. In this work, Back-Propagation rule is used as a learning method.

  • PDF

Adaptive-learning control of vehicle dynamics using nonlinear backstepping technique (비선형 백스테핑 방식에 의한 차량 동력학의 적응-학습제어)

  • 이현배;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.636-639
    • /
    • 1997
  • In this paper, a dynamic control scheme is proposed which not only compensates for the lateral dynamics and longitudinal dynamics but also deal with the yaw motion dynamics. Using the dynamic control technique, adaptive and learning algorithm together, the proposed controller is not only robust to disturbance and parameter uncertainties but also can learn the inverse dynamics model in steady state. Based on the proposed dynamic control scheme, a dynamic vehicle simulator is contructed to design and test various control techniques for 4-wheel steering vehicles.

  • PDF

Design of Multi-Dynamic Neural Network Controller for Improving Transient Performance (과도상태 성능 개선을 위한 다단동적 신경망 제어기 설계)

  • Cho, Hyun-Seob;Oh, Myoung-Kwan
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.344-348
    • /
    • 2010
  • The intent of this paper is to describe a neural network structure called multi dynamic neural network(MDNN), and examine how it can be used in developing a learning scheme for computing robot inverse kinematic transformations. The architecture and learning algorithm of the proposed dynamic neural network structure, the MDNN, are described. Computer simulations are demonstrate the effectiveness of the proposed learning using the MDNN.

  • PDF