• Title/Summary/Keyword: inverse learning

Search Result 205, Processing Time 0.03 seconds

Learning Optimal Trajectory Generation for Low-Cost Redundant Manipulator using Deep Deterministic Policy Gradient(DDPG) (저가 Redundant Manipulator의 최적 경로 생성을 위한 Deep Deterministic Policy Gradient(DDPG) 학습)

  • Lee, Seunghyeon;Jin, Seongho;Hwang, Seonghyeon;Lee, Inho
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.1
    • /
    • pp.58-67
    • /
    • 2022
  • In this paper, we propose an approach resolving inaccuracy of the low-cost redundant manipulator workspace with low encoder and low stiffness. When the manipulators are manufactured with low-cost encoders and low-cost links, the robots can run into workspace inaccuracy issues. Furthermore, trajectory generation based on conventional forward/inverse kinematics without taking into account inaccuracy issues will introduce the risk of end-effector fluctuations. Hence, we propose an optimization for the trajectory generation method based on the DDPG (Deep Deterministic Policy Gradient) algorithm for the low-cost redundant manipulators reaching the target position in Euclidean space. We designed the DDPG algorithm minimizing the distance along with the jacobian condition number. The training environment is selected with an error rate of randomly generated joint spaces in a simulator that implemented real-world physics, the test environment is a real robotic experiment and demonstrated our approach.

Design and implementation of a high precision

  • Ahn, Hyun-Sik;Oh, Sang-Rok;Choy, Ick;Kim, Kwang-Bea;Ko, Myoung-Sam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1415-1419
    • /
    • 1990
  • A novel type of a play-back servo system with high precision is designed using an iterative learning control method by employing the model algorithmic control concept together with an inverse model. A sufficient condition is also provided for the convergency. It is shown by simulation that the proposed control algorithm yields a good performance even in the presence of a periodic load disturbance and proved by experiments using microprocessor-based play-back servo system.

  • PDF

A Study on the Design of Four-legged Walking Intelligence Robots for Overcoming Non-Planer Tomography Using Deep Learning (딥러닝을 이용한 비평탄 지형 극복용 4족 보행 지능로봇의 설계에 관한 연구)

  • Han, Seong-Min;Pak, Myeong-Suk;Kim, Sang-Hoon
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.288-291
    • /
    • 2022
  • 본 논문은 4족 지능 로봇의 비평탄 지형 극복 기능을 구현하기 위해, 시뮬레이션 환경에서 제공하는 역기구학(Inverse Kinematic)과 개선된 강화 학습 방법(Partially Observable Markov Decision Process)을 분석하여 수립한 알고리즘을 동작 검증을 위한 임베디드 보드(Embedded Board)에 실제 적용하여 보았다. 이 연구를 통해 4족 보행 로봇의 효율적인 지형 극복형 보행 방식 설계 방법을 제안하며, 특히 IMU 센서의 지능적인 균형제어 방법을 평가하고 다양한 통신방식과 서보모터 제어 방식을 실험하고 구현하였다. 또한 모터 가감속 제어를 통해 보다 부드럽고 안정적인 보행을 구현한다.

Effect of CAPPI Structure on the Perfomance of Radar Quantitative Precipitation Estimation using Long Short-Term Memory Networks

  • Dinh, Thi-Linh;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.133-133
    • /
    • 2021
  • The performance of radar Quantitative Precipitation Estimation (QPE) using Long Short-Term Memory (LSTM) networks in hydrological applications depends on either the quality of data or the three-dimensional CAPPI structure from the weather radar. While radar data quality is controlled and enhanced by the more and more modern radar systems, the effect of CAPPI structure still has not yet fully investigated. In this study, three typical and important types of CAPPI structure including inverse-pyramid, cubic of grids 3x3, cubic of grids 4x4 are investigated to evaluate the effect of CAPPI structures on the performance of radar QPE using LSTM networks. The investigation results figure out that the cubic of grids 4x4 of CAPPI structure shows the best performance in rainfall estimation using the LSTM networks approach. This study give us the precious experiences in radar QPE works applying LSTM networks approach in particular and deep-learning approach in general.

  • PDF

Vector2graph : A Vector-to-Graph Conversion Framework for Explainable Deep Natural Language Understanding (심층신경망 언어이해에서의 벡터-그래프 변환 방법을 통한 설명가능성 확보에 대한 연구)

  • Hu, Se-Hun;Jung, Sangkeun
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.427-432
    • /
    • 2020
  • 딥러닝(Deep-learning) 기반의 자연어 이해(Natural Language Understanding) 기술들은 최근에 상당한 성과를 성취했다. 하지만 딥러닝 기반의 자연어 이해 기술들은 내적인 동작들과 결정에 대한 근거를 설명하기 어렵다. 본 논문에서는 벡터를 그래프로 변환함으로써 신경망의 내적인 의미 표현들을 설명할 수 있도록 한다. 먼저 인간과 기계 모두가 이해 가능한 표현방법의 하나로 그래프를 주요 표현방법으로 선택하였다. 또한 그래프의 구성요소인 노드(Node) 및 엣지(Edge)의 결정을 위한 Element-Importance Inverse-Semantic-Importance(EI-ISI) 점수와 Element-Element-Correlation(EEC) 점수를 심층신경망의 훈련방법 중 하나인 드랍아웃(Dropout)을 통해 계산하는 방법을 제안한다. 다양한 실험들을 통해, 본 연구에서 제안한 벡터-그래프(Vector2graph) 변환 프레임워크가 성공적으로 벡터의 의미정보를 유지하면서도, 설명 가능한 그래프를 생성함을 보인다. 더불어, 그래프 기반의 새로운 시각화 방법을 소개한다.

  • PDF

REVIEW OF DIFFUSION MODELS: THEORY AND APPLICATIONS

  • HYUNGJIN CHUNG;HYELIN NAM;JONG CHUL YE
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.28 no.1
    • /
    • pp.1-21
    • /
    • 2024
  • This review comprehensively explores the evolution, theoretical underpinnings, variations, and applications of diffusion models. Originating as a generative framework, diffusion models have rapidly ascended to the forefront of machine learning research, owing to their exceptional capability, stability, and versatility. We dissect the core principles driving diffusion processes, elucidating their mathematical foundations and the mechanisms by which they iteratively refine noise into structured data. We highlight pivotal advancements and the integration of auxiliary techniques that have significantly enhanced their efficiency and stability. Variants such as bridges that broaden the applicability of diffusion models to wider domains are introduced. We put special emphasis on the ability of diffusion models as a crucial foundation model, with modalities ranging from image, 3D assets, and video. The role of diffusion models as a general foundation model leads to its versatility in many of the downstream tasks such as solving inverse problems and image editing. Through this review, we aim to provide a thorough and accessible compendium for both newcomers and seasoned researchers in the field.

A Feasibility Study on Adopting Individual Information Cognitive Processing as Criteria of Categorization on Apple iTunes Store

  • Zhang, Chao;Wan, Lili
    • The Journal of Information Systems
    • /
    • v.27 no.2
    • /
    • pp.1-28
    • /
    • 2018
  • Purpose More than 7.6 million mobile apps could be approved on both Apple iTunes Store and Google Play. For managing those existed Apps, Apple Inc. established twenty-four primary categories, as well as Google Play had thirty-three primary categories. However, all of their categorizations have appeared more and more problems in managing and classifying numerous apps, such as app miscategorized, cross-attribution problems, lack of categorization keywords index, etc. The purpose of this study focused on introducing individual information cognitive processing as the classification criteria to update the current categorization on Apple iTunes Store. Meanwhile, we tried to observe the effectiveness of the new criteria from a classification process on Apple iTunes Store. Design/Methodology/Approach A research approach with four research stages were performed and a series of mixed methods was developed to identify the feasibility of adopting individual information cognitive processing as categorization criteria. By using machine-learning techniques with Term Frequency-Inverse Document Frequency and Singular Value Decomposition, keyword lists were extracted. By using the prior research results related to car app's categorization, we developed individual information cognitive processing. Further keywords extracting process from the extracted keyword lists was performed. Findings By TF-IDF and SVD, keyword lists from more than five thousand apps were extracted. Furthermore, we developed individual information cognitive processing that included a categorization teaching process and learning process. Three top three keywords for each category were extracted. By comparing the extracted results with prior studies, the inter-rater reliability for two different methods shows significant reliable, which proved the individual information cognitive processing to be reliable as criteria of categorization on Apple iTunes Store. The updating suggestions for Apple iTunes Store were discussed in this paper and the results of this paper may be useful for app store hosts to improve the current categorizations on app stores as well as increasing the efficiency of app discovering and locating process for both app developers and users.

Design of a Neuro-Euzzy Controller for Hydraulic Servo Systems (유압서보 시스템을 위한 뉴로-퍼지 제어기 설계)

  • 김천호;조형석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.101-111
    • /
    • 1993
  • Many processes such as machining, injection-moulding and metal-forming are usually operated by hydraulic servo-systems. The dynamic characteristics of these systems are complex and highly non-linear and are often subjected to the uncertain external disturbances associated with the processes. Consequently, the conventional approach to the controller design for these systems may not guarantee accurate tracking control performance. An effective neuro-fuzzy controller is proposed to realize an accurate hydraulic servo-system regardless of the uncertainties and the external disturbances. For this purpose, first, we develop a simplified fuzzy logic controller which have multidimensional and unsymmetric membership functions. Secondly, we develop a neural network which consists of the parameters of the fuzzy logic controller. It is show that the neural network has both learning capability and linguistic representation capability. The proposed controller was implemented on a hydraulic servo-system. Feedback error learning architecture is adopted which uses the feedback error directly without passing through the dynamics or inverse transfer function of the hydraulic servo-system to train the neuro-fuzzy controller. A series of simulations was performed for the position-tracking control of the system subjected to external disturbances. The results of simulations show that regardless of inherent non-linearities and disturbances, an accuracy tracking-control performance is obtained using the proposed neuro-fuzzy controller.

A study of MIMO Fuzzy system with a Learning Ability (학습기능을 갖는 MIMO 퍼지시스템에 관한 연구)

  • Park, Jin-Hyun;Bae, Kang-Yul;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.505-513
    • /
    • 2009
  • Z. Cao had proposed NFRM(new fuzzy reasoning method) which infers in detail using relation matrix. In spite of the small inference rules, it shows good performance than mamdani's fuzzy inference method. But the most of fuzzy systems are difficult to make fuzzy inference rules in the case of MIMO system. The past days, We had proposed the MIMO fuzzy inference which had extended a Z. Cao's fuzzy inference to handle MIMO system. But many times and effort needed to determine the relation matrix elements of MIMO fuzzy inference by heuristic and trial and error method in order to improve inference performances. In this paper, we propose a MIMO fuzzy inference method with the learning ability witch is used a gradient descent method in order to improve the performances. Through the computer simulation studies for the inverse kinematics problem of 2-axis robot, we show that proposed inference method using a gradient descent method has good performances.

A Study on the Establishment of ISAR Image Database Using Convolution Neural Networks Model (CNN 모델을 활용한 항공기 ISAR 영상 데이터베이스 구축에 관한 연구)

  • Jung, Seungho;Ha, Yonghoon
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.4
    • /
    • pp.21-31
    • /
    • 2020
  • NCTR(Non-Cooperative Target Recognition) refers to the function of radar to identify target on its own without support from other systems such as ELINT(ELectronic INTelligence). ISAR(Inverse Synthetic Aperture Radar) image is one of the representative methods of NCTR, but it is difficult to automatically classify the target without an identification database due to the significant changes in the image depending on the target's maneuver and location. In this study, we discuss how to build an identification database using simulation and deep-learning technique even when actual images are insufficient. To simulate ISAR images changing with various radar operating environment, A model that generates and learns images through the process named 'Perfect scattering image,' 'Lost scattering image' and 'JEM noise added image' is proposed. And the learning outcomes of this model show that not only simulation images of similar shapes but also actual ISAR images that were first entered can be classified.