• Title/Summary/Keyword: inverse learning

Search Result 205, Processing Time 0.031 seconds

High Speed Tool Feed System by the Mechanism of Ball Screw and Servo Motor (볼 나사와 서보모터 메커니즘에 의한 고속 TOOL 이송장치)

  • 김성식;김경석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.76-82
    • /
    • 1998
  • In this study, the Ball screw and Servo motor Mechanism is considered as a High Speed Tool Feed System for the machining of a piston of a reciprocating engine. For the machining of a piston, that shapes oval, high speed servo mechanism is needed as a positioning of a cutting tool, and the stroke of tool is 0.1 mm ~ 1 mm. Ball screw and servo motor Mechanism is available very much because this mechanism is used widely in general machine. This Mechanism has been designed with the use of the decrease in mass and partial wear of the ball screw for high speed positioning of tool. Also the periodic learning control method with the inverse transfer function compensation has been applied to the positioning control for the high accuracy positioning of tool. These applications lead the achievement of the machining of a piston with an accuracy of 5${\mu}{\textrm}{m}$ at 2500 rpm in CNC turning.

  • PDF

Infrared and Visible Image Fusion Based on NSCT and Deep Learning

  • Feng, Xin
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1405-1419
    • /
    • 2018
  • An image fusion method is proposed on the basis of depth model segmentation to overcome the shortcomings of noise interference and artifacts caused by infrared and visible image fusion. Firstly, the deep Boltzmann machine is used to perform the priori learning of infrared and visible target and background contour, and the depth segmentation model of the contour is constructed. The Split Bregman iterative algorithm is employed to gain the optimal energy segmentation of infrared and visible image contours. Then, the nonsubsampled contourlet transform (NSCT) transform is taken to decompose the source image, and the corresponding rules are used to integrate the coefficients in the light of the segmented background contour. Finally, the NSCT inverse transform is used to reconstruct the fused image. The simulation results of MATLAB indicates that the proposed algorithm can obtain the fusion result of both target and background contours effectively, with a high contrast and noise suppression in subjective evaluation as well as great merits in objective quantitative indicators.

Amazon product recommendation system based on a modified convolutional neural network

  • Yarasu Madhavi Latha;B. Srinivasa Rao
    • ETRI Journal
    • /
    • v.46 no.4
    • /
    • pp.633-647
    • /
    • 2024
  • In e-commerce platforms, sentiment analysis on an enormous number of user reviews efficiently enhances user satisfaction. In this article, an automated product recommendation system is developed based on machine and deep-learning models. In the initial step, the text data are acquired from the Amazon Product Reviews dataset, which includes 60 000 customer reviews with 14 806 neutral reviews, 19 567 negative reviews, and 25 627 positive reviews. Further, the text data denoising is carried out using techniques such as stop word removal, stemming, segregation, lemmatization, and tokenization. Removing stop-words (duplicate and inconsistent text) and other denoising techniques improves the classification performance and decreases the training time of the model. Next, vectorization is accomplished utilizing the term frequency-inverse document frequency technique, which converts denoised text to numerical vectors for faster code execution. The obtained feature vectors are given to the modified convolutional neural network model for sentiment analysis on e-commerce platforms. The empirical result shows that the proposed model obtained a mean accuracy of 97.40% on the APR dataset.

Design of DNP Controller for Robust Control of Auto-Equipment Systems (자동화 설비시스템의 강인제어를 위한 DNP 제어기 설계)

  • 조현섭
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.2
    • /
    • pp.55-62
    • /
    • 1999
  • In order to perform a elaborate task like as assembly, manufacturing and so forth of components, tracking control on the trajectory of power coming in contact with a target as well as tracking control on the movement course trajectory of end-effector is indispensable. In this paper, to bring under robust ard accurate control of auto-equipnent systems which disturbance, parameter alteration of system, uncertainty ard so forth exist, neural network controller called dynamic neural processor(DNP) is designed. Also, the learning architecture to compute inverse kinematic coordinates transfonnations in the manirclator of auto-equipnent systems is developed ard the example that DNP can be used is explained The architocture and learning algorithm of the proposed dynamic neural network, the DNP, are described and computer simllations are provided to demonstrate the effectiveness of the proposed learning method using the DNP.he DNP.

  • PDF

Image Feature Extraction Using Independent Component Analysis of Hybrid Fixed Point Algorithm (조합형 Fixed Point 알고리즘의 독립성분분석을 이용한 영상의 특징추출)

  • Cho, Yong-Hyun;Kang, Hyun-Koo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.1
    • /
    • pp.23-29
    • /
    • 2003
  • This paper proposes an efficient feature extraction of the images by using independent component analysis(ICA) based on neural networks of the hybrid learning algorithm. The proposed learning algorithm is the fixed point(FP) algorithm based on Newton method and moment. The Newton method, which uses to the tangent line for estimating the root of function, is applied for fast updating the inverse mixing matrix. The moment is also applied for getting the better speed-up by restraining an oscillation due to compute the tangent line. The proposed algorithm has been applied to the 10,000 image patches of $12{\times}12$-pixel that are extracted from 13 natural images. The 144 features of $12{\times}12$-pixel and the 160 features of $16{\times}16$-pixel have been extracted from all patches, respectively. The simulation results show that the extracted features have a localized characteristics being included in the images in space, as well as in frequency and orientation. And the proposed algorithm has better performances of the learning speed than those using the conventional FP algorithm based on Newton method.

  • PDF

A Method of Robust Stabilization of the Plants Using DNP (DNP을 이용한 플랜트의 강인 안정화 기법)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1574-1580
    • /
    • 2008
  • In this paper, to bring under robust and accurate control of auto-equipment systems which disturbance, parameter alteration of system, uncertainty and so forth exist, neural network controller called dynamic neural processor(DNP) is designed In order to perform a elaborate task like as assembly, manufacturing and so forth of components, tracking control on the trajectory of power coming in contact with a target as well as tracking control on the movement course trajectory of end-effector is indispensable. Also, the learning architecture to compute inverse kinematic coordinates transformations in the Plants of auto-equipment systems is developed and the example that DNP can be used is explained. The architecture and learning algorithm of the proposed dynamic neural network, the DNP, are described and computer simulations are provided to demonstrate the effectiveness of the proposed learning method using the DNP.

Resume Classification System using Natural Language Processing & Machine Learning Techniques

  • Irfan Ali;Nimra;Ghulam Mujtaba;Zahid Hussain Khand;Zafar Ali;Sajid Khan
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.7
    • /
    • pp.108-117
    • /
    • 2024
  • The selection and recommendation of a suitable job applicant from the pool of thousands of applications are often daunting jobs for an employer. The recommendation and selection process significantly increases the workload of the concerned department of an employer. Thus, Resume Classification System using the Natural Language Processing (NLP) and Machine Learning (ML) techniques could automate this tedious process and ease the job of an employer. Moreover, the automation of this process can significantly expedite and transparent the applicants' selection process with mere human involvement. Nevertheless, various Machine Learning approaches have been proposed to develop Resume Classification Systems. However, this study presents an automated NLP and ML-based system that classifies the Resumes according to job categories with performance guarantees. This study employs various ML algorithms and NLP techniques to measure the accuracy of Resume Classification Systems and proposes a solution with better accuracy and reliability in different settings. To demonstrate the significance of NLP & ML techniques for processing & classification of Resumes, the extracted features were tested on nine machine learning models Support Vector Machine - SVM (Linear, SGD, SVC & NuSVC), Naïve Bayes (Bernoulli, Multinomial & Gaussian), K-Nearest Neighbor (KNN) and Logistic Regression (LR). The Term-Frequency Inverse Document (TF-IDF) feature representation scheme proven suitable for Resume Classification Task. The developed models were evaluated using F-ScoreM, RecallM, PrecissionM, and overall Accuracy. The experimental results indicate that using the One-Vs-Rest-Classification strategy for this multi-class Resume Classification task, the SVM class of Machine Learning algorithms performed better on the study dataset with over 96% overall accuracy. The promising results suggest that NLP & ML techniques employed in this study could be used for the Resume Classification task.

A new learning algorithm for incomplete data sets and multi-layer neural networks

  • Bitou, Keiichi;Yuan, Yan;Aoyama, Tomoo;Nagashima, Umpei
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.150-155
    • /
    • 2003
  • We discussed a quantitative structure-activity relationships (QSAR) technique on incomplete data set. We proposed a new solver that used 2 kinds of multi-layer neural networks. One is to compensate the defect data, and another is to evaluate the QSAR. The solver can predict the defects in model QSAR data. By using them, we get very high precision QSAR. It is 5-10 times higher than that of a traditional method. However, in case of anti-cancer Carboquone, the prediction is not so complete. It was about O(3) wrong than the model calculation. The predicted values would have rather large error. It is caused by noisy observations of Carboquone. However, if we used the uncertain predictions, new data are included in QSAR. If not, they were omitted. The effect would not be little. Therefore, we evaluated the QSAR. The results are contrary to the expectation, are not so wrong. We believe that the wrong effect is suppressed by including information of new data.

  • PDF

Crack Identification Based on Synthetic Artificial Intelligent Technique (통합적 인공지능 기법을 이용한 결함인식)

  • Sim, Mun-Bo;Seo, Myeong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.2062-2069
    • /
    • 2001
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a method is presented in this paper which uses synthetic artificial intelligent technique, that is, Adaptive-Network-based Fuzzy Inference System(ANFIS) solved via hybrid learning algorithm(the back-propagation gradient descent and the least-squares method) are used to learn the input(the location and depth of a crack)-output(the structural eigenfrequencies) relation of the structural system. With this ANFIS and a continuous evolutionary algorithm(CEA), it is possible to formulate the inverse problem. CEAs based on genetic algorithms work efficiently for continuous search space optimization problems like a parameter identification problem. With this ANFIS, CEAs are used to identify the crack location and depth minimizing the difference from the measured frequencies. We have tried this new idea on a simple beam structure and the results are promising.

Crack identification based on synthetic artificial intelligent technique (통합적 인공지능 기법을 이용한 결함인식)

  • Shim, Mun-Bo;Suh, Myung-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.182-188
    • /
    • 2001
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a method is presented in this paper which uses synthetic artificial intelligent technique, that is, Adaptive-Network-based Fuzzy Inference System(ANFIS) solved via hybrid learning algorithm(the back-propagation gradient descent and the least-squares method) are used to learn the input(the location and depth of a crack)-output(the structural eigenfrequencies) relation of the structural system. With this ANFIS and a continuous evolutionary algorithm(CEA), it is possible to formulate the inverse problem. CEAs based on genetic algorithms work efficiently for continuous search space optimization problems like a parameter identification problem. With this ANFIS, CEAs are used to identify the crack location and depth minimizing the difference from the measured frequencies. We have tried this new idea on a simple beam structure and the results are promising.

  • PDF