References
- Koyande, B.A., et al., Predictive Human Resource Candidate Ranking System.
- Al-Otaibi, S.T. and M. Ykhlef, A survey of job recommender systems. International Journal of Physical Sciences, 2012. 7(29): p. 5127-5142. https://doi.org/10.5897/IJPS12.482
- Farber, F., T. Weitzel, and T. Keim, An automated recommendation approach to selection in personnel recruitment. AMCIS 2003 proceedings, 2003: p. 302.
- Breaugh, J.A., The use of biodata for employee selection: Past research and future directions. Human Resource Management Review, 2009. 19(3): p. 219-231. https://doi.org/10.1016/j.hrmr.2009.02.003
- Lin, Y., et al., Machine learned resume-job matching solution. arXiv preprint arXiv:1607.07657, 2016.
- Yi, X., J. Allan, and W.B. Croft. Matching resumes and jobs based on relevance models. in Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval. 2007.
- Sebastiani, F., Machine learning in automated text categorization. ACM computing surveys (CSUR), 2002. 34(1): p. 1-47. https://doi.org/10.1145/505282.505283
- Nigam, K., et al., Text classification from labeled and unlabeled documents using EM. Machine learning, 2000. 39(2-3): p. 103-134. https://doi.org/10.1023/A:1007692713085
- Uysal, A.K. and S. Gunal, The impact of preprocessing on text classification. Information Processing & Management, 2014. 50(1): p. 104-112. https://doi.org/10.1016/j.ipm.2013.08.006
- Otter, D.W., J.R. Medina, and J.K. Kalita, A Survey of the Usages of Deep Learning for Natural Language Processing. IEEE Transactions on Neural Networks and Learning Systems, 2020: p. 1-21.
- Parkhe, V. and B. Biswas, Sentiment analysis of movie reviews: finding most important movie aspects using driving factors. Soft Computing, 2016. 20(9): p. 3373-3379. https://doi.org/10.1007/s00500-015-1779-1
- Bakshi, R.K., et al. Opinion mining and sentiment analysis. in 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom). 2016. IEEE.
- Sivapalan, S., et al. Recommender systems in e-commerce. in 2014 World Automation Congress (WAC). 2014. IEEE.
- Srifi, M., et al., Recommender Systems Based on Collaborative Filtering Using Review Texts-A Survey. Information, 2020. 11(6): p. 317.
- Mujtaba, G., et al., Email classification research trends: review and open issues. IEEE Access, 2017. 5: p. 9044-9064. https://doi.org/10.1109/ACCESS.2017.2702187
- Al-garadi, M.A., et al., Using online social networks to track a pandemic: A systematic review. Journal of biomedical informatics, 2016. 62: p. 1-11. https://doi.org/10.1016/j.jbi.2016.05.005
- Mujtaba, G., et al. Automatic text classification of ICD-10 related CoD from complex and free text forensic autopsy reports. in 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA). 2016. IEEE.
- Gonzalez, T., et al. Adaptive Employee Profile Classification for Resource Planning Tool. in 2012 Annual SRII Global Conference. 2012.
- Guo, S., F. Alamudun, and T. Hammond, ResuMatcher: A personalized resume-job matching system. Expert Systems with Applications, 2016. 60: p. 169-182. https://doi.org/10.1016/j.eswa.2016.04.013
- Golec, A. and E. Kahya, A fuzzy model for competency-based employee evaluation and selection. Computers & Industrial Engineering, 2007. 52(1): p. 143-161. https://doi.org/10.1016/j.cie.2006.11.004
- Gopalakrishna, S.T. and V. Vijayaraghavan, Automated Tool for Resume Classification Using Sementic Analysis. International Journal of Artificial Intelligence and Applications (IJAIA), 2019. 10(1).
- Sayfullina, L., et al. Domain adaptation for resume classification using convolutional neural networks. in International Conference on Analysis of Images, Social Networks and Texts. 2017. Springer.
- Ramos, J. Using tf-idf to determine word relevance in document queries. in Proceedings of the first instructional conference on machine learning. 2003. New Jersey, USA.
- Xu, J., An extended one-versus-rest support vector machine for multi-label classification. Neurocomputing, 2011. 74(17): p. 3114-3124. https://doi.org/10.1016/j.neucom.2011.04.024
- Loper, E. and S. Bird, NLTK: the natural language toolkit. arXiv preprint cs/0205028, 2002.
- Kibriya, A.M., et al. Multinomial naive bayes for text categorization revisited. in Australasian Joint Conference on Artificial Intelligence. 2004. Springer.
- McCallum, A. and K. Nigam. A comparison of event models for naive bayes text classification. in AAAI-98 workshop on learning for text categorization. 1998. Citeseer.
- Raschka, S., Naive bayes and text classification i-introduction and theory. arXiv preprint arXiv:1410.5329, 2014.
- Xu, S., Bayesian Naive Bayes classifiers to text classification. Journal of Information Science, 2018. 44(1): p. 48-59. https://doi.org/10.1177/0165551516677946
- Scholkopf, B., A.J. Smola, and F. Bach, Learning with kernels: support vector machines, regularization, optimization, and beyond. 2002: MIT press.
- Suykens, J.A. and J. Vandewalle, Least squares support vector machine classifiers. Neural processing letters, 1999. 9(3): p. 293-300. https://doi.org/10.1023/A:1018628609742