• Title/Summary/Keyword: inverse heat conduction problem

Search Result 38, Processing Time 0.019 seconds

Effects of Superheat and Coating Layer on Interfacial Heat Transfer Coefficient between Copper Mold and Aluminum Melt during Solidification (응고중 구리 주형과 알루미늄 용탕의 계면열전달계수에 미치는 용탕과열도와 도형재의 영향)

  • Kim, Hee-Soo;Shin, Je-Sik;Lee, Sang-Mok;Moon, Byung-Moon
    • Journal of Korea Foundry Society
    • /
    • v.24 no.5
    • /
    • pp.281-289
    • /
    • 2004
  • The present study focused on the estimation of the interfacial heat transfer coefficient as a function of the surface temperature of the aluminum casting at the mold/casting interface to investigate the effects of superheat and coating layer. The casting experiments of aluminum into a cylindrical copper mold were systematically conducted to obtain the thermal history during solidification. The thermal history recorded by four thermocouples embedded both in the mold and the casting was used to solve the inverse heat conduction problem using Beck's method. The effects of superheat and coating on the interfacial heat transfer coefficient in the liquid state, during the solidification, and in the solid state were comparatively discussed. In the liquid state, the interfacial heat transfer coefficient is thought to be affected by the roughness of the mold, the wettability of the casting on the mold surface, and the thermophysical properties of the coating layer. When the solidification begins, the air gap forms between the casting and the mold, and the interfacial heat transfer coefficient becomes a function of the air gap as well as surface roughness and the superheat. In the solid phase, it depends only upon the thermal conductivity and the thickness of the air gap. The coating layer reduces seriously the interfacial heat transfer coefficient in the liquid state and during the solidification.

A Finite Element Formulation for the Inverse Estimation of an Isothermal Boundary in Two-Dimensional Slab (상단 등온조건을 갖는 이차원 슬랩에서의 경계위치 역추정을 위한 유한요소 정식화)

  • Kim, Sun-Kyoung;Hurh, Hoon;Lee, Woo-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.829-836
    • /
    • 2001
  • A dependable boundary reconstruction technique is proposed. The finite element method is used for the analysis of the direct heat conduction problem to realize the deformable grid system. An appropriate strategy for grid update is suggested. A complete sensitivity analysis is performed to obtain the derivatives required for restoration of the optimal boundary. With the result of the sensitivity analysis, the unknown boundary is sought using the sequential quadratic programming. The method is applied to reconstruction of boundaries with sinusoidal, step, and cavity form. The overall performance of the proposed method is examined by comparison between the estimated the exact boundaries.

A Study on the Heat Transfer of Carbon Steels in Quenching (탄소강의 담금질 열전달에 관한 연구)

  • 김경근;윤석훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.2
    • /
    • pp.20-26
    • /
    • 1995
  • The very rapid cooling problem from $820^{\circ}$C to $20^{\circ}$C on the surface of the steel by thermal conduction including the latent heat of phase transformation of steel and by transient boiling heat transfer of water are considered to principal problem in quenching. The transient boiling process of water at the surface of specimen during the quenching process were experimentally analyzed. Then the heat flux was numerically calculated by the numerical method of inverse heat condition problem. In this report, the simulation program to calculate the cooling curves for large rolls was made using the subcooled transient boiling curve as a boundary condition. By this simulation program, the cooling curves of rolls from D=50mm to D=200mm were calculated and the effects of agitation of circulation of water also investigated.

  • PDF

Inverse Estimation of Thermal Properties for APC-2 Composite (역열전도 기법을 이요한 복잡재료의 열물성치의 산정)

  • Jeong, Beop-Seong;Kim, Seon-Gyeong;Kim, Hui-Jun;Lee, U-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.673-679
    • /
    • 2001
  • The objective of this work is to estimate the temperature dependent thermal properties of the APC-2 composite using a inverse parameter estimation technique. The present inverse method features the estimation of the thermal conductivity and the volumetric heat capacity, which are dependent on the temperature inside the composite. Furthermore, the thermal conductivity is directionally dependent because of the aniosotropy of the composite. An on-line temperature measurement system with a suitable method of heating is built. A composite slab is fabricated using thermoplastic prepreg for the investigation. The corresponding computer code for evaluating the thermal properties inversely using the temperature reading transmitted from the measurement system is developed. The parameterized form is used for the rapid and stable estimation. The modified Newtons method is adopted for the solution technique of the inverse analysis. The estimated results are compared with the measured data from a previous study for the verification.

Development of High-Temperature Heat Flux Gauge for Steel Quenching (강재 급속냉각용 고온 열유속게이지 개발)

  • Lee, Jungho
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.6
    • /
    • pp.323-330
    • /
    • 2010
  • The present study was motivated by increasing demands on quantitative measurements of the heat flux through the water cooling and quenching process of hot steel. The local heat flux measurements are employed by a novel experimental technique that has a function of high-temperature heat flux gauge in which test block assemblies are directly used to measure the heat flux variation during water cooling and quenching of hot steel. The heat flux can be directly achieved by Fourier's law and is also compared with numerical estimation which is solved by inverse heat conduction problem (IHCP). The high-temperature heat flux gauge developed in this study can be applicable to measure cooling rate and history during the actual cooling applications of steelmaking process. In addition, the measurement uncertainty of heat flux is calculated by a quantitative uncertainty analysis which is based on the ANSI/ASME PTC 19.1-2005 standard.

Analysis of Thermal Behavior and Temperature Estimation by using an Observer in Drilling Processes (드릴링 공정의 열거동 해석과 관측기를 이용한 온도 추정법)

  • Kim, Tae-Hoon;Chung, Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1499-1507
    • /
    • 2003
  • Physical importance of cutting temperatures has long been recognized. Cutting temperatures have strongly influenced both the tool life and the metallurgical state of machined surfaces. Temperatures in drilling processes are particularly important, because chips remain in contact with the tool for a relatively long time in a hole. Tool temperatures tend to be higher in drilling processes than in other in machining processes. This paper concerns with modeling of thermal behaviors in drilling processes as well as estimation of the cutting temperature distribution based on remote temperature measurements. One- and two-dimensional estimation problems are proposed to analyze drilling temperatures. The proposed thermal models are compared with solutions of finite element methods. Observer algorithms are developed to solve inverse heat conduction problems. In order to apply the estimation of cutting temperatures, approximation methods are proposed by using the solution of the finite element method. In two-dimensional analysis, a moving heat source according to feedrate of the drilling process is regarded as a fixed heat source with respect to the drilling location. Simulation results confirm the application of the proposed methods.

Temperature Distribution and Thermal Stress Analyses of a Large LPLi Engine Piston (LPG 액정분사 방식의 대형 엔진용 피스톤의 온도분포와 열응력 해석)

  • 임문혁;손재율;이부윤
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.538-550
    • /
    • 2004
  • The convection heat transfer coefficients on the top surface of a large liquid petroleum liquid injection(LPLi) engine piston with the oil gallery are analyzed by solving an inverse thermal conduction problem. The heat transfer coefficients are numerically found so that the difference between analyzed temperatures from the finite element method and measured temperatures is minimized. Using the resulting heat transfer coefficients as the boundary condition, temperature of a large LPLi engine piston is analyzed. With varying cooling water temperature, temperature, stress, and thermal expansion of the piston are analyzed and evaluated.

An Estimation of the Temperature-dependent Thermal Conductivity for Hybrid-fiber Reinforced Shield Tunnel Lining (하이브리드 섬유보강 쉴드터널 라이닝의 온도의존적 열전도도 추정)

  • Lee, Chang Soo;Kim, Yong Hyok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.99-106
    • /
    • 2012
  • This study presents estimation method of temperature-dependent thermal conductivity by using solution of inverse heat conduction problem. Time and depth temperature distribution data from full-scale fire test were used for estimating temperature-dependent thermal conductivity on hybrid-fiber reinforced shield tunnel lining. At short heating time, estimated thermal conductivity sharply decreased within $100^{\circ}C$. On the other hand, it reflected thermal properties of concrete and effect of steel fiber at heating time of measured maximum heating temperature. Thus arbitrary time should be determined to estimate temperature-dependent thermal conductivity in time zone of measured maximum heating temperature. Estimated temperature-dependent thermal conductivity is similar to results of other study.