• Title/Summary/Keyword: inverse functions

Search Result 251, Processing Time 0.022 seconds

Review on the Selenuium, an Essential Trace Mineral (기능성 미량원소 Selenium 화합물에 대한 고찰)

  • 이춘기;남중현;김재철;구본철;강문석;박광근
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48
    • /
    • pp.13-23
    • /
    • 2003
  • The trace mineral, selenium (Se), is an essential nutrient of fundamental importance to human health. It is also very toxic and can cause Se poisoning (selenosis) in human and animals when its intake exceeds a suitable amount. Se functions within mammalian systems primarily in the form of solenoprotein. About 35 selenoproteins have been identified, though many have not yet been fully elucidated. Selenoproteins contain Se as selenocyseine (Sec) and perform variety of structural and enzymic roles; the enzymic roles are best-known as the antioxidants for hydrogen peroxides and lipid peroxides, and the catalysts for production of activity thyroid hormone. Glutathione peroxidases ($\textrm{GP}_X$) among the selenoproteins prevent the generation of free radicals and decrease the risk of oxidative damage to tissues, as does thioredoxin reductase (TR). TR also provides reducing power for several biochemical processes. Selenoproteins P and W are involved with oxidant defense in plasma and muscle, respectively, A selenoprotein is also required for sperm motility and may reduce the risk of miscarriage. Some epidemiological studies have revealed an inverse correlation between Se status and cardiovascular disease, and there is considerable evidence 1mm population com-parison data and animal studies that Se is anticarcinogenic. It is also suggested that Se should be needed for the proper functioning of the immune system, and appear to be a key nutrient in counteracting the development of virulence and inhibiting HIV progression to AIDS. As research continues, the role of selenium in the etiology of chronic diseases like appropriate medical nutrition therapy can be delivered and its effectiveness assessed. Se status in individuals is affected by diet and the availability of the Se. The Se content of plants is affected by the content and availability of the element in the soil in which they are grown, and so greatly varies from country to country, while the Se composition of meat reflects the feeding patterns of livestock. This paper provides an overview on Se as an essential trace mineral for human.

Cost Function of Congestion-Prone Transportation Systems (혼잡현상을 갖는 교통체계의 비용함수)

  • Mun, Dong-Ju;Kim, Hong-Bae
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.6
    • /
    • pp.209-230
    • /
    • 2007
  • This paper analyzed the social cost function of a congestion-prone service system, which is developed from the social cost minimization problem. The analysis focused on the following two issues that have not been explicitly explored in the previous studies: the effect of the heterogeneity of value-of-travel-times among customers on the structure of cost functions; and the structure of the supplier cost function constituting the social cost function. The analysis gave a number of findings that could be summarized as follows. First, the social marginal cost for one unit increase in system output having a certain value-of-travel-time is the sum of the service time cost for that value-of-travel-time and the marginal congestion cost for the average value-of-service-time of all the system outputs. Second, the marginal congestion cost equals the marginal supplier cost of system output under the condition that supplier compensates the customers for the changed service time costs which is incurred by the marginal capacity increase necessary for economically facilitating an additional system output. Third, the compensated marginal cost is the multiple of the marginal capacity cost and the inverse of system utilization ratio, if the service time function is homogeneous of degree zero in its inputs.

Estimation of Halftone Cell Information by Analyzing Distribution of Halftone Dots and Refining Location of Their Spectral Peaks (해프톤 도트 분포 분석 및 주파수 피크 위치 정제에 의한 해프톤 셀 정보 추정)

  • 한영미;김민환
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.2
    • /
    • pp.116-129
    • /
    • 2001
  • To improve the performance of the inverse halftoning, smoothing masks should be designed optimally by using the accurate information of halftone cells. In this thesis, the method of energy minimization is so defined as to determine the exact information of halftone cell. A heuristic search method is proposed to obtain efficiently the parameters of halftone cells which determine the minimum energy. A halftone-peak modeling method with several functions is proposed and used to get initial values of the parameters. The dimension decomposition technique is also adopted to speed up the search process of energy minimization. Several experiments show that the proposed method extracts correct location of the seed pixel of the halftone cell and the extracted information of the halftone cell can be used to get more exactly smoothed color images. The proposed method can be applied to extract the texture patterns, to separate channel images of a scanned color halftone image, and to extract the moire area in an image.

  • PDF

Ecosystem Health Diagnosis Using Integrative Multiple Eco-metric Model Approaches

  • Kim, Hyun-Mac;Choi, Ji-Woong;An, Kwang-Guk
    • Journal of Ecology and Environment
    • /
    • v.36 no.1
    • /
    • pp.73-83
    • /
    • 2013
  • The object of this study was to evaluate lotic ecosystem health using multiple eco-metric approaches such as water chemistry diagnosis, physical habitat health evaluations, and biological integrity modeling at 100 streams of four major watersheds. For the study, eight chemical water quality parameters such as nutrients (N, P) and organic material were measured and 11-metric models of Qualitative Habitat Evaluation Index (QHEI) and multiple eco-metric health assessment model (MEHA) were applied to the four major watershed. Nutrient analysis of nitrogen (N) and phosphorus (P) in all watersheds indicated a eutrophic state depending on the locations of sampling streams. Physical habitat health, based on the QHEI model, averaged 114 (range: 56 - 194), judging as a "good condition" by the criteria of Plafkin et al. (1989). In addition, primary (H1 - H4), secondary (H5 - H7), and tertiary habitat metric variables (H8 - H11) were analyzed in relation to the physical habitat degradations. The plots of tolerant species ($P_{TS}$) and sensitive species ($P_{SS}$) to water quality showed that the proportions of $P_{TS}$ had positive linear functions with nutrients, and that the $P_{SS}$ had inverse linear relations with the chemical variables. The model of eco-metric health assessment showed that mean MEHA was 20.4, indicating a fair condition. Overall, our data suggest that water chemistry, based on nutrients and organic matter, directly modified the trophic structures in relation to food chain in the aquatic ecosystems, and then these directly influenced the compositions of tolerance/sensitive species, resulting in degradations of overall ecological health.

A Distributed Electrical Impedance Tomography Algorithm for Real-Time Image Reconstruction (실시간 영상 복원을 위한 분산 전기단층촬영 알고리즘)

  • Junghoon Lee;Gyunglin Park
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.10 no.1
    • /
    • pp.25-36
    • /
    • 2004
  • This paper proposes and measures the performance of a distributed EIT (Electrical Impedance Tomography) image reconstruction algorithm which has a master-slave structure. The image construction is a computation based application of which the execute time is proportional to the cube of the unknowns. After receiving a specific frame from the master, each computing node extracts the basic elements by executing the first iteration of Kalman Filter in parallel. Then the master merges the basic element lists into one group and then performs the sequential iterations with the reduced number of unknowns. Every computing node has MATLAB functions as well as extended library implemented for the exchange of MATLAB data structure. The master implements another libraries such as threaded multiplication, partitioned inverse, and fast Jacobian to improve the speed of the serial execution part. The parallel library reduces the reconstruction time of image visualization about by half, while the distributed grouping scheme further reduces by about 12 times for the given target object when there are 4 computing nodes.

Solution of randomly excited stochastic differential equations with stochastic operator using spectral stochastic finite element method (SSFEM)

  • Hussein, A.;El-Tawil, M.;El-Tahan, W.;Mahmoud, A.A.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.2
    • /
    • pp.129-152
    • /
    • 2008
  • This paper considers the solution of the stochastic differential equations (SDEs) with random operator and/or random excitation using the spectral SFEM. The random system parameters (involved in the operator) and the random excitations are modeled as second order stochastic processes defined only by their means and covariance functions. All random fields dealt with in this paper are continuous and do not have known explicit forms dependent on the spatial dimension. This fact makes the usage of the finite element (FE) analysis be difficult. Relying on the spectral properties of the covariance function, the Karhunen-Loeve expansion is used to represent these processes to overcome this difficulty. Then, a spectral approximation for the stochastic response (solution) of the SDE is obtained based on the implementation of the concept of generalized inverse defined by the Neumann expansion. This leads to an explicit expression for the solution process as a multivariate polynomial functional of a set of uncorrelated random variables that enables us to compute the statistical moments of the solution vector. To check the validity of this method, two applications are introduced which are, randomly loaded simply supported reinforced concrete beam and reinforced concrete cantilever beam with random bending rigidity. Finally, a more general application, randomly loaded simply supported reinforced concrete beam with random bending rigidity, is presented to illustrate the method.

Circulating microRNA expression profiling in young obese Korean women

  • Choi, Won Hee;Ahn, Jiyun;Um, Min Young;Jung, Chang Hwa;Jung, Sung Eun;Ha, Tae Youl
    • Nutrition Research and Practice
    • /
    • v.14 no.4
    • /
    • pp.412-422
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: This study investigates correlations between circulating microRNAs (miRNAs) and obesity-related parameters among young women (aged 20-30 years old) in Korea. SUBJECTS/METHODS: We analyzed TaqMan low density arrays (TLDAs) of circulating miRNAs in 9 lean (body mass index [BMI] < 25 kg/㎡) and 15 obese (BMI > 25 kg/㎡) women. We also performed gene ontology (GO) analyses of the biological functions of predicted miRNA target genes, and clustered the results using the database for annotation, visualization and integrated discovery. RESULTS: The TLDA cards contain 754 human miRNAs; of these, the levels of 8 circulating miRNAs significantly declined (> 2-fold) in obese subjects compared with those in lean subjects, including miR-1227, miR-144-5p, miR-192, miR-320, miR-320b, miR-484, miR-324-3p, and miR-378. Among them, miR-484 and miR-378 displayed the most significant inverse correlations with BMI (miR-484, r = -0.5484, P = 0.0056; miR-378, r = -0.5538, P = 0.0050) and visceral fat content (miR-484, r = -0.6141, P = 0.0014; miR-378, r = -0.6090, P = 0.0017). GO analysis indicated that genes targeted by miR-484 and miR-378 had major roles in carbohydrate and lipid metabolism. CONCLUSION: Our result showed the differentially expressed circulating miRNAs in obese subjects compared to lean subjects. Although the mechanistic study to reveal the causal role of miRNAs remains, these miRNAs may be novel biomarkers for obesity.

Analysis on the Kinematics and Dynamics of Human Arm Movement Toward Upper Limb Exoskeleton Robot Control - Part 2: Combination of Kinematic and Dynamic Constraints (상지 외골격 로봇 제어를 위한 인체 팔 동작의 기구학 및 동역학적 분석 - 파트 2: 제한조건의 선형 결합)

  • Kim, Hyunchul;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.875-881
    • /
    • 2014
  • The redundancy resolution of the seven DOF (Degree of Freedom) upper limb exoskeleton is key to the synchronous motion between a robot and a human user. According to the seven DOF human arm model, positioning and orientating the wrist can be completed by multiple arm configurations that results in the non-unique solution to the inverse kinematics. This paper presents analysis on the kinematic and dynamic aspect of the human arm movement and its effect on the redundancy resolution of the seven DOF human arm model. The redundancy of the arm is expressed mathematically by defining the swivel angle. The final form of swivel angle can be represented as a linear combination of two different swivel angles achieved by optimizing two cost functions based on kinematic and dynamic criteria. The kinematic criterion is to maximize the projection of the longest principal axis of the manipulability ellipsoid of the human arm on the vector connecting the wrist and the virtual target on the head region. The dynamic criterion is to minimize the mechanical work done in the joint space for each of two consecutive points along the task space trajectory. The contribution of each criterion on the redundancy was verified by the post processing of experimental data collected with a motion capture system. Results indicate that the bimodal redundancy resolution approach improved the accuracy of the predicted swivel angle. Statistical testing of the dynamic constraint contribution shows that under moderate speeds and no load, the dynamic component of the human arm is not dominant, and it is enough to resolve the redundancy without dynamic constraint for the realtime application.

Diffusion Behavior of n-Alkanes by Molecular Dynamics Simulations

  • Goo, Geun-Hoi;Sung, Gi-Hong;Lee, Song-Hi;Chang, Tai-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.11
    • /
    • pp.1595-1603
    • /
    • 2002
  • In this paper we have presented the results of diffusion behavior of model systems for eight liquid n-alkanes ($C_{12}$-$C_{44}$) in a canonical (NVT) ensemble at several temperatures using molecular dynamics simulations. For these n-alkanes of small chain length n, the chains are clearly <$R_{ee}^2$>/6<$R_g^2$>>1 and non-Gaussian. This result implies that the liquid n-alkanes over the whole temperatures considered are far away from the Rouse regime, though the ratio becomes close to the unity as n increases. Calculated self-diffusion constants $D_{self}$ are comparable with experimental results and the Arrhenius plot of self-diffusion constants versus inverse temperature shows a different temperature dependence of diffusion on the chain length. The global rotational motion of n-alkanes is examined by characterizing the orientation relaxation of the end-to-end vector and it is found that the ratio ${\tau}1/{\tau}2$ is less than 3, the value expected for a isotropically diffusive rotational process. The friction constants ${\xi}$of the whole molecules of n-alkanes are calculated directly from the force auto-correlation (FAC) functions and compared with the monomeric friction constants ${\xi}_D$ extracted from $D_{self}$. Both the friction constants give a correct qualitative trends: decrease with increasing temperature and increase with increasing chain length. The friction constant calculated from the FAC's decreases very slowly with increasing temperature, while the monomeric friction constant varies rapidly with temperature. By considering the orientation relaxation of local vectors and diffusion of each site, it is found that rotational and translational diffusions of the ends are faster than those of the center.

Analysis on Kinematics and Dynamics of Human Arm Movement Toward Upper Limb Exoskeleton Robot Control Part 1: System Model and Kinematic Constraint (상지 외골격 로봇 제어를 위한 인체 팔 동작의 기구학 및 동역학적 분석 - 파트 1: 시스템 모델 및 기구학적 제한)

  • Kim, Hyunchul;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.12
    • /
    • pp.1106-1114
    • /
    • 2012
  • To achieve synchronized motion between a wearable robot and a human user, the redundancy must be resolved in the same manner by both systems. According to the seven DOF (Degrees of Freedom) human arm model composed of the shoulder, elbow, and wrist joints, positioning and orientating the wrist in space is a task requiring only six DOFs. Due to this redundancy, a given task can be completed by multiple arm configurations, and thus there exists no unique mathematical solution to the inverse kinematics. This paper presents analysis on the kinematic and dynamic aspect of the human arm movement and their effect on the redundancy resolution of the human arm based on a seven DOF manipulator model. The redundancy of the arm is expressed mathematically by defining the swivel angle. The final form of swivel angle can be represented as a linear combination of two different swivel angles achieved by optimizing different cost functions based on kinematic and dynamic criteria. The kinematic criterion is to maximize the projection of the longest principal axis of the manipulability ellipsoid for the human arm on the vector connecting the wrist and the virtual target on the head region. The dynamic criterion is to minimize the mechanical work done in the joint space for each two consecutive points along the task space trajectory. As a first step, the redundancy based on the kinematic criterion will be thoroughly studied based on the motion capture data analysis. Experimental results indicate that by using the proposed redundancy resolution criterion in the kinematic level, error between the predicted and the actual swivel angle acquired from the motor control system is less than five degrees.