• Title/Summary/Keyword: invariant approximation

Search Result 33, Processing Time 0.021 seconds

Discrete-time approximation and modeling of a broadband underwater propagation channel based on eigenray analysis (고유 음선 분석에 기반한 광대역 수중음향 전달 채널의 이산시간 근사 및 모의 방법 연구)

  • Shin, Donghoon;Cho, Hyeon-Deok;Kwon, Taekik;Ahn, Jae-Kyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.3
    • /
    • pp.216-225
    • /
    • 2020
  • In this paper, broadband underwater propagation channel modeling based on eigenray analysis is discussed. Underwater channels are often formulated in frequency domain time-harmonic signals, which are impractical for simulating broadband signals in time domain. In this regard, time domain modeling of the underwater propagation channel is required for the simulation of broadband signals, for which the eigenray analysis based on ray tracing, resulting in multipath propagation delays in time-domain, is used in this paper. For discrete time system application, the phase, frequency-dependent loss and non-integer sample delays for each eigenray, are approximated by the finite impulse response of the broadband propagation channel.

Robust Digital Redesign for Observer-based System (관측기 기반 시스템에 대한 강인 디지털 재설계)

  • Sung, Hwa-Chang;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.3
    • /
    • pp.285-290
    • /
    • 2007
  • In this paper, we presents robust digital redesign (DR) method for observer-based linear time-invariant (LTI) system. The term of DR involves converting an analog controller into an equivalent digital one by considering two condition: state-matching and stability. The design problems viewed as a convex optimization problem that we minimize the error of the norm bounds between interpolated linear operators to be matched. Also, by using the bilinear and inverse bilinear approximation method, we analyzed the uncertain parts of given observer-based system more precisely, When a sampling period is sufficiently small, the conversion of a analog structured uncertain system to an equivalent discrete-time system have proper reason. Sufficiently conditions for the state-matching of the digitally controlled system are formulated in terms of linear matrix inequalities (LMIs).

Analysis of Stokes flows by Carrera unified formulation

  • Varello, Alberto;Pagani, Alfonso;Guarnera, Daniele;Carrera, Erasmo
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.3
    • /
    • pp.363-383
    • /
    • 2018
  • One-dimensional (1D) models of incompressible flows, can be of interest for many applications in which fast resolution times are demanded, such as fluid-structure interaction of flows in compliant pipes and hemodynamics. This work proposes a higher-order 1D theory for the flow-field analysis of incompressible, laminar, and viscous fluids in rigid pipes. This methodology is developed in the domain of the Carrera Unified Formulation (CUF), which was first employed in structural mechanics. In the framework of 1D modelling, CUF allows to express the primary variables (i.e., velocity and pressure fields in the case of incompressible flows) as arbitrary expansions of the generalized unknowns, which are functions of the 1D computational domain coordinate. As a consequence, the governing equations can be expressed in terms of fundamental nuclei, which are invariant of the theory approximation order. Several numerical examples are considered for validating this novel methodology, including simple Poiseuille flows in circular pipes and more complex velocity/pressure profiles of Stokes fluids into non-conventional computational domains. The attention is mainly focused on the use of hierarchical McLaurin polynomials as well as piece-wise nonlocal Lagrange expansions of the generalized unknowns across the pipe section. The preliminary results show the great advantages in terms of computational costs of the proposed method. Furthermore, they provide enough confidence for future extensions to more complex fluid-dynamics problems and fluid-structure interaction analysis.