• 제목/요약/키워드: invariant Feature

검색결과 433건 처리시간 0.025초

Robust Features and Accurate Inliers Detection Framework: Application to Stereo Ego-motion Estimation

  • MIN, Haigen;ZHAO, Xiangmo;XU, Zhigang;ZHANG, Licheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권1호
    • /
    • pp.302-320
    • /
    • 2017
  • In this paper, an innovative robust feature detection and matching strategy for visual odometry based on stereo image sequence is proposed. First, a sparse multiscale 2D local invariant feature detection and description algorithm AKAZE is adopted to extract the interest points. A robust feature matching strategy is introduced to match AKAZE descriptors. In order to remove the outliers which are mismatched features or on dynamic objects, an improved random sample consensus outlier rejection scheme is presented. Thus the proposed method can be applied to dynamic environment. Then, geometric constraints are incorporated into the motion estimation without time-consuming 3-dimensional scene reconstruction. Last, an iterated sigma point Kalman Filter is adopted to refine the motion results. The presented ego-motion scheme is applied to benchmark datasets and compared with state-of-the-art approaches with data captured on campus in a considerably cluttered environment, where the superiorities are proved.

MEGH: A New Affine Invariant Descriptor

  • Dong, Xiaojie;Liu, Erqi;Yang, Jie;Wu, Qiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권7호
    • /
    • pp.1690-1704
    • /
    • 2013
  • An affine invariant descriptor is proposed, which is able to well represent the affine covariant regions. Estimating main orientation is still problematic in many existing method, such as SIFT (scale invariant feature transform) and SURF (speeded up robust features). Instead of aligning the estimated main orientation, in this paper ellipse orientation is directly used. According to ellipse orientation, affine covariant regions are firstly divided into 4 sub-regions with equal angles. Since affine covariant regions are divided from the ellipse orientation, the divided sub-regions are rotation invariant regardless the rotation, if any, of ellipse. Meanwhile, the affine covariant regions are normalized into a circular region. In the end, the gradients of pixels in the circular region are calculated and the partition-based descriptor is created by using the gradients. Compared with the existing descriptors including MROGH, SIFT, GLOH, PCA-SIFT and spin images, the proposed descriptor demonstrates superior performance according to extensive experiments.

단면의 성질을 적용한 크기와 회전 변화에 불변인 영상 검사 시스템 (The characteristics of section applied image inspection system to the moment values are invariant with respect to variable object size and rotation)

  • 이용중;김태원;김기대;류재엽
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 춘계학술대회 논문집(한국공작기계학회)
    • /
    • pp.131-136
    • /
    • 2001
  • The purpose of this paper is to develop image inspection system endows an automatic operating and measuring that the moment values are invariant with respect to variable object size and rotation. In this paper, using these moment feature vector with Hu s 7 invariant moment is also given. The characteristics of section which is applied in the mechanics used moment descriptor of invariant moment detection algorithm for image inspection system. Corresponding rates between 94% and 96% have been achived for all object tested.

  • PDF

Affine Local Descriptors for Viewpoint Invariant Face Recognition

  • Gao, Yongbin;Lee, Hyo Jong
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 춘계학술발표대회
    • /
    • pp.781-784
    • /
    • 2014
  • Face recognition under controlled settings, such as limited viewpoint and illumination change, can achieve good performance nowadays. However, real world application for face recognition is still challenging. In this paper, we use Affine SIFT to detect affine invariant local descriptors for face recognition under large viewpoint change. Affine SIFT is an extension of SIFT algorithm. SIFT algorithm is scale and rotation invariant, which is powerful for small viewpoint changes in face recognition, but it fails when large viewpoint change exists. In our scheme, Affine SIFT is used for both gallery face and probe face, which generates a series of different viewpoints using affine transformation. Therefore, Affine SIFT allows viewpoint difference between gallery face and probe face. Experiment results show our framework achieves better recognition accuracy than SIFT algorithm on FERET database.

2차원 불변 영상 인식을 위한 퍼지 분류기와 바이스펙트럼 (Fuzzy Classifier and Bispectrum for Invariant 2-D Shape Recognition)

  • 한수환;우영운
    • 한국멀티미디어학회논문지
    • /
    • 제3권3호
    • /
    • pp.241-252
    • /
    • 2000
  • 이 논문에서는 2차원 영상의 외곽선 정보를 이용하여 추출한 바이스펙트럼과 가중치 퍼지 분류기를 이용하여 영상의 이동, 회전, 크기 변화에 무관한 패턴 인식 기법을 제안하고, 그 인식 결과를 LVQ(Learning Vector Quantization)를 이용한 신경망 분류기와 비교하였다. 3차 큐물런트를 근간으로하는 바이 스펙트럼은 각 영상의 외각선 정보에 적용되어 15개의 특징값들을 추출한다. 이 특징 벡터들은 영상의 이동, 회전, 크기 변화에 무관한 특징을 가지며 2차원 평면 영상의 대표값으로 사용되어 패턴 분류를 위해 가중치 퍼지 분류기의 입력으로 들어간다. 서로 다른 8가지 비행기들의 평면 영상을 이용하여 실험한 결과들은 제안된 인식 시스템의 성능이 상대적으로 우수함을 보였다.

  • PDF

위치 이동에 무관한 홍채 인식을 위한 웨이블렛 변환 기술 (Wavelet Transform Technology for Translation-invariant Iris Recognition)

  • 임철수
    • 정보처리학회논문지B
    • /
    • 제10B권4호
    • /
    • pp.459-464
    • /
    • 2003
  • 본 논문에서 제안한 위치 이동에 무관한 웨이블렛 변환을 이용한 홍채 인식 방법은 영상 획득 장비에 의해 획득한 사용자의 눈 영상에 대하여 홍채 영역만을 추출하기 위한 전처리를 수행하고 전처리를 거친 홍채 영상에 의하여 사용자의 신원을 식별하는데 있어서 홍채 영상의 기울어짐 및 이동 문제를 해결하였다. 이를 위해서 일반적인 웨이블렛을 사용하는 대신, 위치 이동에 무관한 웨이블렛 변환을 통하여 최적의 특징값을 추출한후, 이를 코드화하여 저장한 후, 비교하여 본인 여부를 식별하였다. 실험결과 제안된 방법으로 생성된 특징 벡터와 기존에 등록된 특징 벡터의 일치도 측정에 있어서 종래의 웨이블렛 변환 홍채 인식 방법보다 오인식률(FAR) 및 오거부율(FRR)이 현저하게 감소하였다.

Recent Advances in Feature Detectors and Descriptors: A Survey

  • Lee, Haeseong;Jeon, Semi;Yoon, Inhye;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제5권3호
    • /
    • pp.153-163
    • /
    • 2016
  • Local feature extraction methods for images and videos are widely applied in the fields of image understanding and computer vision. However, robust features are detected differently when using the latest feature detectors and descriptors because of diverse image environments. This paper analyzes various feature extraction methods by summarizing algorithms, specifying properties, and comparing performance. We analyze eight feature extraction methods. The performance of feature extraction in various image environments is compared and evaluated. As a result, the feature detectors and descriptors can be used adaptively for image sequences captured under various image environments. Also, the evaluation of feature detectors and descriptors can be applied to driving assistance systems, closed circuit televisions (CCTVs), robot vision, etc.

SIFT 알고리즘으로 kidney 특징점 검출 (Extraction of kidney's feature points by SIFT algorithm in ultrasound image)

  • 김성중;유재천
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2019년도 제60차 하계학술대회논문집 27권2호
    • /
    • pp.313-314
    • /
    • 2019
  • 본 논문에서는 특징점 검출 알고리즘을 적용하여 ultrasound image에서 특징점을 검출하는 것과 object dectection을 위한 keypoints가 object에 올바르게 위치하는지를 검증하는 실험을 진행한다. 특징점 검출을 위한 알고리즘으로는 Scale Invariant Feature Transform(SIFT)과 Harris corner detection 을 적용하여 검증한다.

  • PDF

The Optimal Bispectral Feature Vectors and the Fuzzy Classifier for 2D Shape Classification

  • Youngwoon Woo;Soowhan Han;Park, Choong-Shik
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2001년도 The Pacific Aisan Confrence On Intelligent Systems 2001
    • /
    • pp.421-427
    • /
    • 2001
  • In this paper, a method for selection of the optimal feature vectors is proposed for the classification of closed 2D shapes using the bispectrum of a contour sequence. The bispectrum based on third order cumulants is applied to the contour sequences of the images to extract feature vectors for each planar image. These bispectral feature vectors, which are invariant to shape translation, rotation and scale transformation, can be used to represent two-dimensional planar images, but there is no certain criterion on the selection of the feature vectors for optimal classification of closed 2D images. In this paper, a new method for selecting the optimal bispectral feature vectors based on the variances of the feature vectors. The experimental results are presented using eight different shapes of aircraft images, the feature vectors of the bispectrum from five to fifteen and an weighted mean fuzzy classifier.

  • PDF

추이적 행렬을 이용한 패트리 넷 모델의 분석방법에 대한 연구 (A study on the analysis method of Petri Net Models Using the Transitive Matrix)

  • 송유진;이종근
    • 한국시뮬레이션학회논문지
    • /
    • 제10권1호
    • /
    • pp.13-24
    • /
    • 2001
  • We propose a divide-conquer method of Petri nets under the condition of one-boundedness for all the Petri nets. We introduce the P-invariant transitive matrix of Petri nets and relationship between them. The feature of the P-invariant transitive matrix is that each element stands for the transitive relationship between input place and output place through the firing of the enable transition.

  • PDF