• Title/Summary/Keyword: intumescent flame retardant

Search Result 6, Processing Time 0.024 seconds

Evaluation of Mechanical Performance and Flame Retardant Characteristics of Biomass-based EVA Composites using Intumescent Flame Retardant Technology

  • Park, Ji-Won;Kim, Hoon;Lee, Jung-Hun;Jang, Seong-Wook;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.189-201
    • /
    • 2018
  • Intumescent system is a highly effective flame retardant technology that takes advantage of the mechanism of foaming and carbonization. In order to materialize Intumescent system, it is necessary to use reinforcement material to improve the strength of the material. In this study, we used kenaf as a natural fiber to manufacture intumescent/EVA (ethylene vinyl acetate) composites to improve mechanical and flame retardant performance. Finally two materials with different particle shape are applied to one system. Therefore, the influence factors of the particles with different shapes on the composite material were analyzed based on the tensile test. For this purpose, we have used the tensile strength analysis model and confirmed that it can only act as a partial strength reinforcement due to weak binding force between the matrix and particles. In the combustion characteristics analysis using cone calorimeter and UL 94, the combustion characteristics were enhanced as the content of Intuemscent was increased. As the content of kenaf increased, combustion characteristics were strengthened and carbonization characteristics were weakened. Through the application of kenaf, it can be confirmed that elastic modulus improvement and combustion characteristics can be strengthened, which confirmed the possibility of development of environmentally friendly flame retardant materials.

Preparation of EVA/Intumescent/Nano-Clay Composite with Flame Retardant Properties and Cross Laminated Timber (CLT) Application Technology (난연특성을 가지는 EVA/Intumescent/나노클레이 복합재료 제조 및 교호집성재(Cross Laminated Timber) 적용 기술)

  • Choi, Yo-Seok;Park, Ji-Won;Lee, Jung-Hun;Shin, Jae-Ho;Jang, Seong-Wook;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.73-84
    • /
    • 2018
  • Recently, the importance of flame retardation treatment technology has been emphasized due to the increase in urban fire accidents and fire damage incidents caused by building exterior materials. Particularly, in the utilization of wood-based building materials, the flame retarding treatment technology is more importantly evaluated. An Intumescent system is one of the non-halogen flame retardant treatment technologies and is a system that realizes flame retardancy through foaming and carbonization layer formation. To apply the Intumescent system, composite material was prepared by using Ethylene vinyl acetate (EVA) as a matrix. To enhance the flame retardant properties of the Intumescent system, a nano-clay was applied together. Composite materials with Intumescent system and nano - clay technology were processed into sheet - like test specimens, and then a new structure of cross laminated timber with improved flame retardant properties was fabricated. In the evaluation of combustion characteristics of composite materials using Intumescent system, it was confirmed that the maximum heat emission was reduced efficiently. Depending on the structure attached to the surface, the CLT had two stages of combustion. Also, it was confirmed that the maximum calorific value decreased significantly during the deep burning process. These characteristics are expected to have a delayed combustion diffusion effect in the combustion process of CLT. In order to improve the performance, the flame retardation treatment technique for the surface veneer and the optimization technique of the application of the composite material are required. It is expected that it will be possible to develop a CLT structure with improved fire characteristics.

The Intumescent Flame Retardant Mechanism of Red-phosphorus Containing Ortho-Cresol Novolac / Biphenyl Epoxy Composites (적인을 포함한 Ortho-Cresol Novolac/Biphenyl 에폭시 복합재료의 발포성 난연 기구)

  • 김윤진;강신우;유제홍;김익흠;서광석
    • Polymer(Korea)
    • /
    • v.26 no.5
    • /
    • pp.623-633
    • /
    • 2002
  • The flame retardant and thermal properties of ortho-cresol novolac (OCN) and biphenyl epoxy blends containing red-phosphorus were investigated. For five types of compounds designed with the volume ratio of OCN and biphenyl epoxy, thermal properties were analysed by TGA or DTC, and flame retardancy effectiveness was estimated through UL-94V test. While the flame retardant and thermal properties were improved with the content of filler and red-phosphorus, the excessive amount of red-phosphorus caused to deteriorate those properties. Using the blends of OCN/biphenyl rather than pure OCN or biphenyl epoxy as a matrix the flame retardancy of composites could be improved by the synergic effects of high thermal resistance of OCN and intumescent property of biphenyl. The flame retardant me chanism of epoxy compound containing red-phosphorus could be thought of the heat-insulating effect of intumescent char-layer formed in the surface of composites.

A Study on the Preparation of Powder Coatings Containing Halogen-Free Flame Retardant and Fire Safety (Halogen-Free 난연제를 포함하는 파우더 코팅소재 제조 및 화재안전성 연구)

  • Lee, Soon-Hong;Chung, Hwa-Young;Kim, Dae-In;Noh, Tae-Joon
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.4
    • /
    • pp.47-58
    • /
    • 2011
  • Halogen free intumescent flame retardants(IFRS), such as the mixture of melamine phosphate(MP) and char forming agents(pentaerythritol(PER), di-pentaerythritol(DiPER), tris(2-hydroxyethyl) isocyanurate(THEIC)), were prepared and characterized. Polypropylene(PP)/$IFR_S$ composites were also prepared in the presence of ethylene diamine phosphate(EDAP) as a synergist and used into flame retardant PP powder coatings. Thermoplastic PP powder coatings at 20 wt% flame retardant loading were manufactured by extruded and then mechanical cryogenic crushed to bring them in fine powder form. These intumescent flame retardant powder coatings($IFRPC_S$) were applied on mild steel surface for the purpose of protection and decorative. It is a process in which a $IFRPC_S$ particles coming in contact with the preheated mild steel surface melt and form a thin coating layer. The obtained MP flame retardant was analyzed by utilizing FTIR, solid-state $^{31}P$ NMR, ICP, EA and PSA. The mechanical properties as tensile strength, melt flow index(MFI) and the thermal property as TGA/DTA and the fire safety characteristics as limiting oxygen index(LOI), UL94 test, SEM were used to investigate the effect of $IFRPC_S$. The experimental results show that the presence of $IFR_S$ considerably enhanced the fire retardant performances as evidenced by the increase of LOI values 17.3 vol% and 32.6 vol% for original PP and $IFRPC_S$-3(PP/MP-DiPER/EDAP), respectively, and a reduction in total flaming combustion time(under 15 sec) in UL94 test of $IFRPC_S$. The prepared $IFRPC_S$-3 have good comprehensive properties with fire retardancy 3.2 mm UL94 V-0 level, LOI value 32.6%, tensile strength $247.3kg/cm^2$, surface roughness Ra $0.78{\mu}m$, showing a better application prospect. Through $IFRPC_S$-2(PP/MP-PER/EDAP) and $IFRPC_S$-3 a better flame retardancy than that of the $IFRPC_S$-1(PP/MP/EDAP) was investigated which was responsible for the formed more dense and compact char layer, improved synergy effect of MP and PER/DiPER.

The fire-risks of cost-optimized steel structures: Fire-resistant and hot-rolled carbon steel

  • Garcia, Harkaitz;Cuadrado, Jesus;Biezma, Maria V.;Calderon, Inigo
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.67-75
    • /
    • 2021
  • This work studies the behaviour of a steel portal frame selection under fire exposure, considering both span lengths and fire exposure times as variables. Such structures combine carbon steel (S275), fireproof micro-alloyed steel (FR), and coatings of intumescent paint with variable thicknesses, improving thereby the flame retardant behaviour of the steel structure. Thus, the main contribution of this study is the optimization of the portal frames by combining both steels, analysing the resulting costs influence on the final dimensions. Besides, the topological optimization of each steel component within the structure is also defined, in accordance with the following variables: weather conditions, span, paint thickness, and cost of steel. The results mainly confirmed that using both FR and S275 grades with intumescent painting is the Pareto optimum when considering performance, feasibility and costs of such portal frames widely used for industrial facilities.

Flame Retardant Synergistic Performance between Cyclic Diphosphonate Ester and Melamine in Polyamide 6 (Polymide 6에서 Cyclic Diphosphonate Ester와 Melamine의 난연 효과)

  • Wang, Xueli;Jiang, Jianming;Yang, Shenglin;Jin, Junhong;Li, Guang
    • Polymer(Korea)
    • /
    • v.32 no.2
    • /
    • pp.125-130
    • /
    • 2008
  • A commercial cyclic diphosphonate ester (TPMP) and melamine (MA) was combined and added to polyamide 6 (PA6) to prepare the fire retardant PA6. An increase of the oxygen index to 28.6 as well as an improvement of the UL-94 classification to V-0 rating was observed. Cone measurements explained the rate of heat release (RHR) decreased and TGA showed the early decomposition and high solid residue due to co-addition of TPMP and MA, suggesting the occurrence of synergistic effect of TPMP and MA on fire resistance of PA6. The morphology of the char developed during combust ion showed the appearance of thick, intumescent cells on the surface of retardant PA6, which protects the underlying material from the action of the heat flux or flame and limits the diffusion of combustible volatile products towards the flame and oxygen.