• Title/Summary/Keyword: intuitive mathematical SMK and PCK

Search Result 2, Processing Time 0.014 seconds

Interpretation of Teacher Knowledge in Geometry with Shulman - Fischbein Framework: Cases of US Preservice Teachers (Shulman-Fischbein 개념틀을 활용한 예비 교사의 기하 영역에 대한 지식 해석 : 미국 예비교사들의 사례)

  • Kim, Ji Sun
    • Journal of the Korean School Mathematics Society
    • /
    • v.21 no.2
    • /
    • pp.113-139
    • /
    • 2018
  • There is no doubt about the importance of teacher knowledge for good teaching. Many researches attempted to conceptualize elements and features of teacher knowledge for teaching in a quantitative way. Unlike existing researches, this article suggests an interpretation of preservice teacher knowledge in the field of geometry using the Shulman - Fischbein framework in a qualitative way. Seven female preservice teachers voluntarily participated in this research and they performed a series of written tasks that asked their subject matter knowledge (SMK) and pedagogical content knowledge (PCK). Their responses were analyzed according to mathematical algorithmic -, formal -, and intuitive - SMK and PCK. The interpretation revealed that preservice teachers had overally strong SMK, their deeply rooted SMK did not change, their SMK affected their PCK, they had appropriate PCK with regard to knowledge of student, and they tended to less focus on mathematical intuitive - PCK when they considered instructional strategies. The understanding of preservice teachers' knowledge throughout the analysis using Shulman-Fischbein framework will be able to help design teacher preparation programs.

Interpretation of Pre-service Teachers' Knowledge by Shulman-Fischbein Framework : For Students' Errors in Plane Figures (평면도형 영역에서 Shulman-Fischbein 개념틀을 활용한 학생의 오류에 대한 예비 교사의 지식 분석)

  • Kim, Ji Sun
    • Communications of Mathematical Education
    • /
    • v.32 no.3
    • /
    • pp.297-314
    • /
    • 2018
  • This article aims at providing implication for teacher preparation program through interpreting pre-service teachers' knowledge by using Shulman-Fischbein framework. Shulman-Fischbein framework combines two dimensions (SMK and PCK) from Shulman with three components of mathematical knowledge (algorithmic, formal, and intuitive) from Fischbein, which results in six cells about teachers' knowledge (mathematical algorithmic-, formal-, intuitive- SMK and mathematical algorithmic-, formal-, intuitive- PCK). To accomplish the purpose, five pre-service teachers participated in this research and they performed a series of tasks that were designed to investigate their SMK and PCK with regard to students' misconception in the area of geometry. The analysis revealed that pre-service teachers had fairly strong SMK in that they could solve the problems of tasks and suggest prerequisite knowledge to solve the problems. They tended to emphasize formal aspect of mathematics, especially logic, mathematical rigor, rather than algorithmic and intuitive knowledge. When they analyzed students' misconception, pre-service teachers did not deeply consider the levels of students' thinking in that they asked 4-6 grade students to show abstract and formal thinking. When they suggested instructional strategies to correct students' misconception, pre-service teachers provided superficial answers. In order to enhance their knowledge of students, these findings imply that pre-service teachers need to be provided with opportunity to investigate students' conception and misconception.