• 제목/요약/키워드: intuitionistic H-fuzzy relation

검색결과 5건 처리시간 0.019초

INTUITIONISTIC(S,T)-FUZZY h-IDEALS OF HEMIRINGS

  • Zhan, Jianming;Shum, K.P.
    • East Asian mathematical journal
    • /
    • 제22권1호
    • /
    • pp.93-109
    • /
    • 2006
  • The concept of intuitionistic fuzzy set was first introduced by Atanassov in 1986. In this paper, we define the intuitionistic(S,T)-fuzzy left h-ideals of a hemiring by using an s-norm S and a t-norm T and study their properties. In particular, some results of fuzzy left h-ideals in hemirings recently obtained by Jun, $\"{O}zt\"{u}rk$, Song, and others are extended and generalized to intuitionistic (S,T)-fuzzy ideals over hemirings.

  • PDF

직관적 H-퍼지 관계 (Intuitionistic H-Fuzzy Relations)

  • K. Hur;H. W. Kang;J. H. Ryou;H. K. Song
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 춘계 학술대회 학술발표 논문집
    • /
    • pp.37-40
    • /
    • 2003
  • We introduce the category IRel (H) consisting of intuitionistic fuzzy relational spaces on sets and we study structures of the category IRel (H) in the viewpoint of the topological universe introduced by L.D.Nel. Thus we show that IRel (H) satisfies all the conditions of a topological universe over Set except the terminal separator property and IRel (H) is cartesian closed over Set.

  • PDF

INTUITIONISTIC H-FUZZY SETS

  • HUR KUL;KANG HEE WON;RYOU JANG HYUN
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제12권1호
    • /
    • pp.33-45
    • /
    • 2005
  • We introduce the category ISet(H) of intuitionistic H-fuzzy sets and show that ISet(H) satisfies all the conditions of a topological universe except the terminal separator property. And we study the relation between Set(H) and ISet(H).

  • PDF

직관적 H-퍼지 반사관계 (Intuitionistic H-Fuzzy Reflexive Relations)

  • K. Hur;H. W. Kang;J. H. Ryou;H. K. Song
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 춘계 학술대회 학술발표 논문집
    • /
    • pp.33-36
    • /
    • 2003
  • We introduce the subcategory IRel$\_$R/ (H) of IRel (H) consisting of intuitionistic H-fuzzy reflexive relational spaces on sets and we study structures of IRel$\_$R/ (H) in a viewpoint of the topological universe introduce by L.D.Nel. We show that IRel$\_$R/ (H) is a topological universe over Set. Moreover, we show that exponential objects in IRel$\_$R/ (H) are quite different from those in IRel (H) constructed in [7].

  • PDF

범주 IRe $l_{R}$(H)의 부분범주 (Some Subcategories of The Category IRe$l_{R}$(H))

  • K. Hur;H. W. Kang;J. H. Ryou;H. K. Song
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 춘계 학술대회 학술발표 논문집
    • /
    • pp.29-32
    • /
    • 2003
  • We introduce the subcategories IRe $l_{PR}$ (H), IRe $l_{PO}$ (H) and IRe $l_{E}$(H) of IRe $l_{R}$(H) and study their structures in a viewpoint of the topological universe introduced by L.D.Nel. In particular, the category IRe $l_{R}$(H)(resp. IRe $l_{P}$(H) and IRe $l_{E}$(H)) is a topological universe eve, Set. Moreover, we show that IRe $l_{E}$(H) has exponential objects.ial objects.

  • PDF