지금까지 잘 알려진 네트워크 기반 보안 기법들은 공격에 수동적이고 우회한 공격이 가능하다는 취약점을 가지고 있어 인라인(in_line) 모드의 공격에 능동적 대응이 가능한 오용탐지 기반의 침입방지시스템의 출현이 불가피하다. 하지만 오용탐지 기반의 침입방지시스템은 탐지 규칙에 비례하여 과도한 오경보(False Alarm)를 발생시켜 정상적인 네트워크 흐름을 방해하는 잘못된 대응으로 이어질 수 있어 기존 침입탐지시스템보다 더 위험한 문제점을 갖고 있으며, 새로운 변형 공격에 대한 탐지가 미흡하다는 단점이 있다. 본 논문에서는 이러한 문제를 보완하기 위해 오용탐지 기반의 침입방지시스템과 Anomaly System 중의 하나인 서포트 벡터 머신(Support Vector Machines; 이하 SVM)을 이용한 침입방지시스템 기술을 제안한다. 침입 방지시스템의 탐지 패턴을 SVM을 이용하여 진성경보만을 처리하는 기법으로 실험결과 기존 침입방지시스템과 비교하여, 약 20% 개선된 성능결과를 보였으며, 제안한 침입방지시스템 기법을 통하여 오탐지를 최소화하고 새로운 변종 공격에 대해서도 효과적으로 탐지 가능함을 보였다.
초고속 인터넷 망이 빠른 속도로 구축이 되고, 네트워크에 대한 해커나 침입자들의 수가 급증함에 따라, 실시간 고속 패킷 처리가 가능한 네트워크 침입 탐지 시스템이 요구되고 있다. 본 논문에서는 일반적으로 소프트웨어 방식으로 구현된 침입 탐지 시스템을 고속의 패킷 처리에 뛰어난 성능을 가지고 있는 네트워크 프로세서를 이용하여 재설계 및 구현하였다. 제한된 자원과 기능을 가지는 다중 처리 프로세서(Multi-processing Processor)로 구성된 네트워크 프로세서에서 고성능 침입 탐지 시스템을 실현하기 위하여, 최적화된 자료구조와 알고리즘을 설계하였다. 그리고 더욱 효율적으로 침입 탐지 엔진을 스케줄링(scheduling)하기 위한 침입 탐지 엔진 할당 기법을 제안하였으며, 구현과 성능 분석을 통하여 제안된 기법의 적절성을 검증하였다.
기후온난화로 인해 해수면 상승은 연안지역의 해수침투 피해를 야기했다. 해수침투에 대한 취약성 지수를 PSR 모형과 계층화 분석 방법(AHP)을 이용하여 개발하였다. 우리나라 삼면의 연안지역 중 강원도 속초시, 인천시 강화군, 충청남도 태안군, 전라남도 여수시, 진도군을 선정하여 인문, 경제, 사회, 환경 등의 자료를 바탕으로 14개 지표를 선정하였다. 스케일 재조정방법을 통해 지표의 표준화를 실시하고, 전문가들의 의견을 반영한 설문으로 얻어진 가중치를 부여하여 해수침투 취약성 지수를 산정하였다. 그 결과 전라남도 여수시가 해수침투에 가장 취약한 지역으로 선정되었다. 개발된 해수침투 취약성 지수는 해수침투 피해를 최소화 할 수 있는 향후 정책을 결정하는 중요한 도구 및 기초자료로 활용될 수 있을 것으로 기대된다.
The surface circulation of northern South China Sea (hereafter SCS) for the period 1987-2005 was studied using the data of more than 500 satellite-tracked drifters and wind data from QuikSCAT. The mean flow directions in the northern SCS except the Luzon Strait (here after LS) during the periods October_March was southwestward, and $April{\sim}September$ northeastward. A strong northwestward intrusion of the Kuroshio through the LS appears during the $October{\sim}March$ period of northeasterly wind, but the intrusion became weak between April and September. When the strong intrusion occurred, the eddy kinetic energy (EKE) in the LS was $388cm^2/s^2$ which was almost 2 times higher than that during the weak-intrusion season. The volume transport of the Kuroshio in the east of the Philippines shows an inverse relationship to that of the LS. There is a six-month phase shift between the two seasonal phenomena. The volume transport in the east of the Philippines shows its peak sis-month earlier faster than that of the LS. The strong Kuroshio intrusion is found to be also related to the seasonal variation of the wind stress curl generated by the north easterly wind. The negative wind stress curl in the northern part of LS induces an anticyclonic flow, while the positive wind stress curl in the southern part of LS induces a cyclonic flow. The northwestward Kuroshio intrusion in the northern part of LS happened with larger negative wind stress curl, while the westward intrusion along $20.5^{\circ}N$ in the center of the LS occurred with weaker negative wind stress curl.
침입 탐지 시스템에 대하여 많은 연구 노력들이 진행되고 있다. 그러나 침입 탐지 시스템의 모델과 성능 평가에 대한 작업은 거의 찾아 볼 수 없다. 본 논문에서는 지역적인 침입 탐지를 위한 에이전트들과 전역적인 침입 탐지를 위한 집중 데이터 분석 컴포넌트를 가지고 있는 다중 도메인 환경에서 혼합 침입 탐지를 위한 통신 프레임워크를 제안한다. 또한 전체적인 프레임워크에서 호스트 기반과 네트워크 기반 침입 탐지 시스템의 결합을 가정한다. 지역 도메인에서 경보와 로그 데이터 같은 정보 집합은 상위 레벨로 보고 된다. 계위의 루트에는 데이터 합동을 수행하는 전역 매니저가 있다. 전역 매니저는 침입 탐지 경보의 집합과 상호관련의 결과로 보안 정책을 하위 레벨로 전달하게 된다. 본 논문에서는 혼합 침입 탐지 시스템을 위한 통심 메커니즘을 모델링하고 데이터 및 정책 전달을 위한 전송 능력의 성능 평가를 위하여 OPNET 모델러를 이용한 시뮬레이터를 개발한다. 여러 가지 시나리오에 기반하여 통신 지연에 초점을 두고 모의실험 결과를 제시하고 비교한다.
이 논문에서는 침입 탐지 시스템의 탐지 효율을 높이기 위해 데이터 마이닝의 클러스터링 기법을 이용하여 경보 데이터를 그룹화하고 그 결과를 이용하여 경보 데이터의 상관 관계를 분석하는 방법을 제안하였다. 즉 클러스터링 기법을 이용하여 경보데이터를 사용자가 원하는 개수의 그룹으로 분류하고, 생성된 경보 데이터 클러스터 모델을 이용하여 새로운 경보 데이터을 분류할 수 있도록 하였다. 또한, 결과 클러스터의 생성 원인이 되는 이전의 경보의 분포 데이터를 저장 관리하여 클러스터 간의 시퀀스를 생성하였고, 생성된 각각의 클러스터 시퀀스를 통합하여 클러스터들의 시퀀스를 추출하여 발생한 경보 이후의 향후 발생 가능한 경보 타입을 예측하기 위한방법을 제공하였다. 이는 과거에 탐지된 공격의 형태 뿐만 아니라 새로운 혹은 변형된 경보의 분류나 분석에도 이용 가능하다. 또한 생성된 클러스터간의 생성 원인의 분석에 의한 클러스터 간의 순차적인 관계의 추출을 통해 사용자가 공격의 순차적 구조나 탐지된 각 공격 이면에 감추어진 전략을 이해하는데 도움을 주며 현재의 경보 이후에 발생 가능한 경보들을 얘측할 수 있다.
제안한 ANIDS(Advanced Network based IDS)는 네트워크 패킷을 수집하여 연관규칙 마이닝 기법을 이용하여 패킷의 연관성을 분석하고, 연관성이 높은 패킷을 이용해 패턴 그래프를 생성한 후, 생성된 패턴 그래프를 이용해 침입인지를 판단하는 네트워크 기반 침입 탐지 시스템이다. ANIDS는 패킷 수집 및 관리하는 PMM(Packet Management Module), 연관성 있는 패킷들만을 이용해 패턴 그래프를 생성하는 PGGM (Pattern Graph Generate Module), 침입을 탐지하는 IDM(Intrusion Detection Module)으로 구성된다. 특히, PGGM은 Apriori 알고리즘을 이용해 $Sup_{min}$보다 큰 연관규칙의 후보 패킷을 찾은 후, 연관규칙의 신뢰도를 측정하여 최소 신뢰도 $Conf_{min}$보다 큰 연관규칙의 패턴 그래프를 생성한다. ANIDS는 패킷간의 연관성을 분석하여 침입인지를 탐지 할 수 있는 패턴 그래프를 사용함으로써, 침입 탐지의 긍정적 결함 오류를 감소시킬 수 있으며, 완벽한 패턴 그래프 패턴이 생성되기 전에, 이미 침입으로 판정된 패턴 그래프 패턴과 비교하여 유사한 패턴 형태를 침입으로 간주하므로 기존의 침입 탐지 시스템에 비해 침입 탐지속도를 감소시키고 침입 탐지율을 증가시킬 수 있다.
대부분의 침입탐지 방법은 알려진 침입 정보를 축적하고 임의의 행위 데이터에 대해 침입 여부를 결정하는 오용행위 탐지의 방법에 기반하고 있다. 그러나 생성된 공격행위 패턴은 새로운 공격 및 변형된 공격행위에 대응하는 방법에 어려움이 있다. 현실적으로 비정상행위 탐지기법의 높은 오탐을 고려하면, 대용량 순서기반 침입패턴은 알려진 공격에 대한 탐지와 함께 침입패턴의 유사도를 측정하는 방법의 보완을 통해 변형된 공격 및 새로운 공격에 대한 탐지의 가능성을 높이는 대책이 요구된다. 본 논문에서는 순서기반 침입패턴의 유사성 매칭을 위해 다중서열정렬 기법을 적용하는 방법을 제안한다. 그 기법은 침입패턴 서열의 통계적 분석을 가능하게 하고 구현이 용이하며, 서열 크기의 변경에 따라 공격에 대한 탐지 경보 및 오탐의 수를 줄이는 결과를 보였다.
인터넷의 급속한 발전과 함께 정보 시스템의 보안 위협인 침입 사고도 급증하고 있다. 보다 강 화된 보안 메커니즘이 요구되고 있다. 시스템 로그 분석은 이런 침입 사실을 탐지하고 침입 자를 추적하 기 위해 필수적인 과정이나 로그 자료의 종류와 형태의 다양함으로 인해 자동화된 로그 수 집 및 분석이 현실적으로 어려운 상태이다. 우리는 침입 추적에 필요한 로그 자료의 형태를 정의하고 방 대한 로그 자 료로부터 효율적으로 로그수집, 분석할수 있는 도구를 설계 및 구현하였다. 이 논문에서는 개발된 도구 를 사용하여 실제 침입 추적을 한 경험을 소개하고 도구의 향후 개선 방향을 제시한다 Widespread use of Internet despite numerous positive aspects resulted in increased number of system intrusions and the need for enhanced security mechanisms is urgent. Systematic collection and analysis of log data are essential in intrusion investigation. Unfortunately existing logs are stored in diverse and incompatible format thus making an automated intrusion investigation practically impossible. We examined the types of log data essential in intrusion investigation and implemented a tool to enable systematic collection and efficient analysis of voluminous log data. Our tool based on RBDMS and SQL provides graphical and user-friendly interface. We describe our experience of using the tool in actual intrusion investigation and explain how our tool can be further enhanced.
This paper introduces a statistical approach of intrusion detection and tunes an intrusion detection model using fuzzy ste. We describel the method of applying fuzzy set for NIDES intensity measure. By using fuzzy set, we improve the algorithm for evaluating score value of NIDES, and present a possibility of intrusion detection system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.