• Title/Summary/Keyword: intrinsic junction

Search Result 47, Processing Time 0.023 seconds

The efficiency charateristics of intrinsic layer thickness dependence for amorphous silicon single junction solar cells (Intrinsic layer 두께 가변에 따른 단일접합 비정질 박막 태양전지의 효율 특성 변화)

  • Yoon, Ki-Chan;Kim, Young-Kook;Heo, Jong-Kyu;Choi, Hyung-Wook;Yi, Young-Suk;Yi, Jun-Sin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.80-82
    • /
    • 2009
  • The dependence of the efficiency characteristics of hydrogenated amorphous silicon single junction solar cells on the various intrinsic layer thickness has been investigate in the glass/$SnO_2$:F/p,i,n a-Si:H/Al type of amorphous silicon solar cells by cluster PECVD system. The open circuit voltage, short circuit current, fill factor and conversion efficiency have been measured under AM 1.5 condition. The result of the cell performance was improved about 8.2% due to an increase in the short circuit current.

  • PDF

Novel nonequilibrium microwave emission and current-voltage characteristics of $Bi_2$$Sr_2$Ca$Cu_2$$O_{8+d}$ intrinsic Josephson junction mesas

  • Kim, Sun-Mi;Lee, Kie-Jin;Bae, Myung-Ho;Lee, Hu-Jong;Cha, Deok-Joon;Takayuki Ishibashi;Katsuaki Sato;Kim, Jin-Tae
    • Progress in Superconductivity
    • /
    • v.4 no.2
    • /
    • pp.104-108
    • /
    • 2003
  • We have measured the transport properties of $Bi_2$$Sr_2$$CaCu_2$$O_{8+d}$ (BSCCO) intrinsic Josephson junction mesa. Transport measurements with current flow along the c-axis, perpendicular to the layer of mesa showed multi-branch structures on the current-voltage characteristics. For single intrinsic junctions, the microwave radiation appears in the form of three different modes of oscillations, which include Josephson emission, nonequilibrium broad emission and sharp coherent microwave emission. Mutual phase interactions between two-mesas structures of BSCCO intrinsic Josephson junctions were studied. The results were explained within the framework of the Josephson plasma excitation model due to quasiparticle injection.n.

  • PDF

Microwave plasma emission from tunnel-injected nonequilibrium high-Tc superconductors

  • Lee, Kie-Jin
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.9-14
    • /
    • 2000
  • We report on the novel nonequilibrium nlicrowave emission from quasiparticle-injected high-Tc superconductors. The phenomena have been observed for the current-injected YBCO/I/Au or BSCCO/I/Au thin-film tunnel junctions and BSCCO single-crystal intrinsic Josephson mesa junction samples. For the thin-film tunnel junctions, the emitted radiation appears as broadband. For the intrinsic BSCCO mesa samples, the radiation appears as three different modes of emissions depending on the bias point in the hysteretic current-voltage characteristics; Josephson-emission, nonequilibrium broad emission and sharp coherent microwave emission. The results were interpreted by the Josephson plasma excitation model due to quasiparticle injection.

  • PDF

Optimization of I layer bandgap for efficient triple junction solarcell by ASA simulation (삼중접합 태양전지에서 Intrinsic Layer 밴드갭 가변을 통한 태양전지 고효율화 시뮬레이션)

  • Kang, Minho;Jang, Juyeon;Baek, Seungsin;Yi, Junsin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.64.1-64.1
    • /
    • 2011
  • 다중접합 태양전지는 흡수대역이 다른 juntion으로 구성되어, 각각의 태양전지 간의 전류정합(current matching)이 효율 향상에 중요하다. 본 실험에서는 Top cell에 i-a-Si:H(Thinckness:100nm), Middle cell에는 i-a-SiGe:H(Thickness:800nm)을 적용하였고, bottom cell에는 i-${\mu}c$-Si:H(Thickness:1800nm), 수광부의 p-layer에 에 SiOx을 이용하여 triple juntion amorphous silicon solar cell(삼중접합태양전지)을 구현하였다. 이를 최적화 시키기 위해 ASA simulation을 이용하여 각 Cell의 intrinsic layer의 밴드갭을 가변하였다. 가변 결과 i-a-Si:H : 1.85 eV, i-a-SiGe:H: 1.6 eV, i-${\mu}c$-Si:H: 1.4 eV에서 태양전지 효율 14.5 %을 기록 하였다. 본 연구를 통해 Triple juntion cell에서의 intrinsic layer의 밴드갭 최적화를 구현해 볼 수 있었다.

  • PDF

Improved Rs Monitoring for Robust Process Control of High Energy Well Implants

  • Kim, J.H.;Kim, S.;Ra, G.J.;Reece, R.N.;Bae, S.Y.
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2007.06a
    • /
    • pp.109-112
    • /
    • 2007
  • In this paper we describe a robust method of improving precision in monitoring high energy ion implantation processes. Ion implant energy accuracy was measured in the device manufacturing process using an unpatterned implanted layer on an intrinsic p-type silicon wafer. To increase Rs sensitivity to energy at the well implant process, a PN junction structure was formed by P-well and deep N-well implants into the p-type Si wafer. It was observed that the depletion layer formed by the PN junction was very sensitive to energy variation of the well implant. Conclusively, it can be recommended to monitor well implant processes using the Rs measurement method described herein, i.e., a PN junction diode structure since it shows excellent Rs sensitivity to variation caused by energy difference at the well implant step.

  • PDF