Submicron Stacked-junction Fabrication from Bi₂Sr₂CaCu₂O_{8+δ} Whiskers by Focused-ion-beam (FIB) Etching

S.-J. Kim^a, Yu. I. Latyshev^b, T. Hatano^c, G.-S. Kim^a, T. Yamashita^c

^a Cheju National University, Cheju, Korea
^b Institute of Radio-Engineering and Electronics, Russian Acad.of Sciences, Moscow, Russia
^c National Institute of Materials Science, Tskuba, Japan

We fabricated submicron-sized intrinsic Josephson junctions (IJJ) by the focused-ion-beam (FIB) etching method. The principal result was a reduction of the in-plane junction area to 0.3 μ m² by direct FIB etching with no degradation in the critical transition temperature (T_c). In the current (I)- voltage (V) characteristics of these stacks, the gap structure and the normal state resistance are clearly observed together with a reduction of the Joule heating and disappearance of the branch structure. The Coulomb staircase structure was found in the I-V curves of submicron junctions as a result of their small effective capacitance of fF order.

keywords: intrinsic Josephson junction, focused-ion-beam, in-plane junction area, submicron junctions