• Title/Summary/Keyword: intravalley phonon mobility

Search Result 3, Processing Time 0.014 seconds

Temperature Dependence of Electron Mobility in Uniaxial Strained nMOSFETs

  • Sun, Wookyung;Shin, Hyungsoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.2
    • /
    • pp.146-152
    • /
    • 2014
  • The temperature dependence of strain-enhanced electron mobility in nMOSFETs is investigated by using a self-consistent Schr$\ddot{o}$dinger-Poisson solver. The calculated results suggest that vertical compressive stress is more efficient to maintain the strain-enhanced electron mobility than longitudinal tensile stress in high temperature condition.

Substrate Doping Concentration Dependence of Electron Mobility Enhancement in Uniaxial Strained (110)/<110> nMOSFETs

  • Sun, Wookyung;Choi, Sujin;Shin, Hyungsoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.518-524
    • /
    • 2014
  • The substrate doping concentration dependence of strain-enhanced electron mobility in (110)/<110> nMOSFETs is investigated by using a self-consistent Schr$\ddot{o}$dinger-Poisson solver. The electron mobility model includes Coulomb, phonon, and surface roughness scattering. The calculated results show that, in contrast to (100)/<110> case, the longitudinal tensile strain-induced electron mobility enhancement on the (110)/<110> can be increased at high substrate doping concentration.

Electron Mobility Model in Strained Si Inversion Layer (응력변형을 겪는 Si 반전층에서 전자 이동도 모델)

  • Park Il-Soo;Won Taeyoung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.3 s.333
    • /
    • pp.9-16
    • /
    • 2005
  • The mobility in strained Si inversion layer on $Si_{1-x}Ge_x$ is calculated considering a quantum effect(subband energy and wavefunction) in inversion layer and relaxation time approximation. The quantum effect in inversion layer is obtained by using self-consistent calculation of $Schr\ddot{o}dinger$ and Poisson equations. For the relaxation time, intravalley and intervalley scatterings are considered. The result shows that the reason for the enhancement in mobility as Ge mole fraction increases is that the electron mobility in 2-폴드 valleys is about 3 times higher than that of 4-폴드 valleys and most electrons are located in 2-폴드 valleys as Ge mole fraction increases. Meanwhile, for the phonon-limited mobility the fitting to experimental data, Coulomb and surface roughness mobilities are included in total mobility, Deformation potentials are selected for the calculated effective field, temperature, and Ge mole fraction dependent mobilities to be fitted to experimental data, and then upgraded data can be obtained by considering nonparabolicity in Si band structure.