Electron Mobility Model in Strained Si Inversion Layer

응력변형을 겪는 Si 반전층에서 전자 이동도 모델

  • Park Il-Soo (Department of Electrical Engineering, Inha University) ;
  • Won Taeyoung (Department of Electrical Engineering, Inha University)
  • 박일수 (인하대학교 전기공학과) ;
  • 원태영 (인하대학교 전기공학과)
  • Published : 2005.03.01

Abstract

The mobility in strained Si inversion layer on $Si_{1-x}Ge_x$ is calculated considering a quantum effect(subband energy and wavefunction) in inversion layer and relaxation time approximation. The quantum effect in inversion layer is obtained by using self-consistent calculation of $Schr\ddot{o}dinger$ and Poisson equations. For the relaxation time, intravalley and intervalley scatterings are considered. The result shows that the reason for the enhancement in mobility as Ge mole fraction increases is that the electron mobility in 2-폴드 valleys is about 3 times higher than that of 4-폴드 valleys and most electrons are located in 2-폴드 valleys as Ge mole fraction increases. Meanwhile, for the phonon-limited mobility the fitting to experimental data, Coulomb and surface roughness mobilities are included in total mobility, Deformation potentials are selected for the calculated effective field, temperature, and Ge mole fraction dependent mobilities to be fitted to experimental data, and then upgraded data can be obtained by considering nonparabolicity in Si band structure.

[ $Si_{1-x}Ge_x$ ] 위의 Si 반전층에서의 이동도를 반전층에서의 양자현상(버금띠 에너지와 파동함수)과 완화시간어림셈을 고려하여 계산하였다. 반전층에서의 양자현상은 슈뢰딩거 방정식과 포아슨 방정식을 자체 모순없이 계산하여 얻었다 완화시간은 밸리내 산란과 밸리사이 산란을 고려하여 계산하였다. 그 결과 Ge 함량이 증가됨에 따라 이동도가 증가되는 이유는 4-폴드 밸리에 존재하는 전자의 이동도보다 2-폴드 밸리에 존재하는 전자의 이동도가 약 3배 정도 크며 대부분의 전자가 밸리의 분리에 의해 2-폴드 밸리에 존재하기 때문이라는 것을 알 수 있었다. 한편, 포논 산란만을 고려한 이동도를 실험치와 일치시키기 위하여 전체 이동도에는 반전층 계면에서의 산란과 쿨롱 산란을 포함시켰다. 계산된 전계, 온도, 그리고 Ge 함량에 의존하는 이동도는 실험치와 근접하도록 변형포텐셜을 설정하였으며 정확한 결과를 위해서는 Si 에너지띠의 비포물성을 고려해야함을 확인하였다.

Keywords

References

  1. S. Takagi, J. L. Hoyt, J. J. Welser, and J. F. Gibbons, 'Comparative study of phonon-limited mobility of two-dimensional electrons in strained and unstrained Si metal-oxide-semiconductor field-effect transistors,' J. Appl. Phys., Vol. 80, no. 3, pp. 1567-1577, 1996 https://doi.org/10.1063/1.362953
  2. M. V. Fischetti, F. Gamiz, and W. Hansch, 'On the enhanced electron mobility in strained-silicon inversion layers,' J. Appl. Phys., Vol. 92, no. 12, pp. 7320-7324, 2002 https://doi.org/10.1063/1.1521796
  3. F. Gamiz, P. Cartujo-Cassinello, J. B. Roldan, and F. Jimenez-Molinos, 'Electron transport in strained Si inversion layers grown on SiGe-on-insulator substrates,' J. Appl. Phys., Vol. 92, no. 1, pp. 288-295, 2002 https://doi.org/10.1063/1.1481962
  4. J. B. Roldan and F. Gamiz, 'Simulation and modeling of transport properties in strained-Si and strained-Si/Sioe-on-insulator MOSFETs,' Solid-State Electronics, Vol. 48, pp. 1347-1355, 2004 https://doi.org/10.1016/j.sse.2004.01.016
  5. K. Rim, J. Chu, H. Chen, K. A. Jenkins, T. Kanarsky, K. Lee, A. Mocuta, H. Zhu, R. Roy, J. Newbury, J. Ott, K Petrarca, P. Mooney, D. Lacey, S. Koester, K Chan, D. Boyd, M. Ieong, and H. -S, Wong, 'Characteristics and device design of sub-100 nm strained Si N- and PMOSFETs,' IEEE symposium on VLSl Technology Digest of Technical Papers 2002, pp. 98-99, 2002 https://doi.org/10.1109/VLSIT.2002.1015406
  6. T. Mizuno, N. Sugiyama, H. Satake, and S. Takagi, 'Advanced SOl-MOSFETs with strained-Si channel for high speed CMOS -electron/hole mobility enhancement -, ' IEEE symposium on VLSl Technology Digest of Technical Papers 2000, pp. 210-211, 2000
  7. J. Welser, J. L. Hoyt, S. Takagi, and J. F. Gibbons, 'Strain dependence of the performance enhancement in strained-Si n-MOSFETs,' IEDM 94, pp. 373-376, 1994 https://doi.org/10.1109/IEDM.1994.383389
  8. J. Welser, J. L. Hoyt, and J. F. Gibbons, 'Electron mobility enhancement in strained-Si n-type metal-oxide-semiconductor field-effect transistors,' IEEE Electron Device Letters, Vol. 15, no. 3, pp. 100-102, 1994 https://doi.org/10.1109/55.285389
  9. G. F. Formicone, D. Vasileska, and D. K. Ferry, 'Transport in the surface channel of strained Si on a relaxed $Si_{1?x}Ge_x$ substrate,' Solid-State Electronics, Vol. 41, no. 6, pp. 879-885, 1997 https://doi.org/10.1016/S0038-1101(97)00042-7
  10. S. F.-P. Paul and H. Fouckhardt, 'An improved shooting approach for solving the time -independent Schrodinger equation for III/V QW structures,' Physics Letters A, Vol. 286, pp. 199-204, 2001 https://doi.org/10.1016/S0375-9601(01)00398-X
  11. F. Stern, 'Self-consistent results for n-type Si inversion layers,' Phys. Rev. B, Vol. 5 no. 12, pp. 4891-4899, 1972 https://doi.org/10.1103/PhysRevB.5.4891
  12. T. Ando, A. B. Fowler, and F. Stern, 'Electronic properties of two-dimensional systems,' Rev. Mod. Phys, Vol. 54, no. 2, pp. 437-672, 1982 https://doi.org/10.1103/RevModPhys.54.437
  13. Th. Vogelsang and K. R. Hofmann, 'Electron transport in strained Si layers on $Si_{1-x}Ge_x$ substrates,' Appl. Phys. Lett., Vol. 63, pp. 186-188, 1993 https://doi.org/10.1063/1.110394
  14. K. Masaki, C. Hamaguchi, K. Taniguchi, and M. lwase, 'Electron mobility in Si inversion layers,' Jpn. J. Appl. Phys., Vol. 28, no. 10, pp. 1856-1863, 1989 https://doi.org/10.1143/JJAP.28.1856
  15. G. Abstreiter, H. Brugger, and T. Wolf, 'Straininduced two-dimensional electron gas in selectively doped Si/$Si_xGe_{1-x}$ superlattices,' Phys. Rev. Lett., Vol. 54, no. 22, pp. 2441-2444, 1985 https://doi.org/10.1103/PhysRevLett.54.2441
  16. S. Takagi, A. Toriumi, M. Iwase, and H. Tango, 'On the universality of inversion layer mobility in Si MOSFET's: Part l-Effects of substrate impurity concentration,' IEEE Trans. Electron Devices, Vol. 41, no. 12, pp.2357-2362, 1994 https://doi.org/10.1109/16.337449