• Title/Summary/Keyword: intracellular growth

Search Result 481, Processing Time 0.033 seconds

Transcriptomic Analysis of the Difference of Bovine Satellite Cell Between Longissimus dorsi and Semimembranosus on Hanwoo Muscle Tissues (한우의 등심과 사태조직 유래 근육위성세포의 성장단계별 유전발현 차이 분석)

  • Kim, H.J.;Kang, D.H.;Park, B.H.;Lee, W.Y.;Choi, J.H.;Chung, K.Y.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.23 no.1
    • /
    • pp.117-128
    • /
    • 2021
  • The skeletal muscle development of Hanwoo steer has been processed in the prenatal and postnatal periods. Bovine satellite cell located in perimysium of muscle tissues has differentially distributed in peripheral tissues. The study of postnatal development of satellite cells can help understand the genetic and functional regulation of meat characteristics. Factors affecting muscle size increase are related to the accumulation of DNA or synthesis of RNA proteins. In this study, we observed muscle development and differentiation after culturing bovine satellite cells derived from longissimus dorsi and semimembranosus regions of Hanwoo muscle tissue. In addition, RNA sequencing data were analyzed for differentially expressed genes (DEG) involved in intracellular muscle development and growth. The DEG of the two muscle tissues were compared according to 1day, 2day, 4day, and 7day. The overall gene expression level was confirmed by the heat map. Gene Ontology (GO) classification method was used to compare the expression level of gene groups affecting LD and SM development. The histology of GO was consistent with the time-cause change of LD and SM cell morphology. SM showed more active skeletal muscle development than LD. Even within the same time, SM expressed more genes than LD, thus synthesizing more muscle fibers

The TGFβ→TAK1→LATS→YAP1 Pathway Regulates the Spatiotemporal Dynamics of YAP1

  • Min-Kyu Kim;Sang-Hyun Han;Tae-Geun Park;Soo-Hyun Song;Ja-Youl Lee;You-Soub Lee;Seo-Yeong Yoo;Xin-Zi Chi;Eung-Gook Kim;Ju-Won Jang;Dae Sik Lim;Andre J. van Wijnen;Jung-Won Lee;Suk-Chul Bae
    • Molecules and Cells
    • /
    • v.46 no.10
    • /
    • pp.592-610
    • /
    • 2023
  • The Hippo kinase cascade functions as a central hub that relays input from the "outside world" of the cell and translates it into specific cellular responses by regulating the activity of Yes-associated protein 1 (YAP1). How Hippo translates input from the extracellular signals into specific intracellular responses remains unclear. Here, we show that transforming growth factor β (TGFβ)-activated TAK1 activates LATS1/2, which then phosphorylates YAP1. Phosphorylated YAP1 (p-YAP1) associates with RUNX3, but not with TEAD4, to form a TGFβ-stimulated restriction (R)-point-associated complex which activates target chromatin loci in the nucleus. Soon after, p-YAP1 is exported to the cytoplasm. Attenuation of TGFβ signaling results in re-localization of unphosphorylated YAP1 to the nucleus, where it forms a YAP1/TEAD4/SMAD3/AP1/p300 complex. The TGFβ-stimulated spatiotemporal dynamics of YAP1 are abrogated in many cancer cells. These results identify a new pathway that integrates TGFβ signals and the Hippo pathway (TGFβ→TAK1→LATS1/2→YAP1 cascade) with a novel dynamic nuclear role for p-YAP1.

Rg3-enriched red ginseng extracts enhance apoptosis in CoCl2-stimulated breast cancer cells by suppressing autophagy

  • Yun-Jeong Jeong;Mi-Hee Yu;Yuna Cho;Min-Young Jo;Kwon-Ho Song;Yung Hyun Choi;Taeg Kyu Kwon;Jong-Young Kwak;Young-Chae Chang
    • Journal of Ginseng Research
    • /
    • v.48 no.1
    • /
    • pp.31-39
    • /
    • 2024
  • Background: Ginsenoside Rg3, a primary bioactive component of red ginseng, has anti-cancer effects. However, the effects of Rg3-enriched ginseng extract (Rg3RGE) on apoptosis and autophagy in breast cancer have not yet been investigated. In the present study, we explored the anti-tumor effects of Rg3RGE on breast cancer cells stimulated CoCl2, a mimetic of the chronic hypoxic response, and determined the operative mechanisms of action. Methods: The inhibitory mechanisms of Rg3RGE on breast cancer cells, such as apoptosis, autophagy and ROS levels, were detected both in vitro. To determine the anti-cancer effects of Rg3RGE in vivo, the cancer xenograft model was used. Results: Rg3RGE suppressed CoCl2-induced spheroid formation and cell viability in 3D culture of breast cancer cells. Rg3RGE promoted apoptosis by increasing cleaved caspase 3 and cleaved PARP and decreasing Bcl2 under the hypoxia mimetic conditions. Further, we identified that Rg3RGE promoted apoptosis by inhibiting lysosomal degradation of autophagosome contents in CoCl2-induced autophagy. We further identified that Rg3RGE-induced apoptotic cell death and autophagy inhibition was mediated by increased intracellular ROS levels. Similarly, in the in vivo xenograft model, Rg3RGE induced apoptosis and inhibited cell proliferation and autophagy. Conclusion: Rg3RGE-stimulated ROS production promotes apoptosis and inhibits protective autophagy under hypoxic conditions. Autophagosome accumulation is critical to the apoptotic effects of Rg3RGE. The in vivo findings also demonstrate that Rg3RGE inhibits breast cancer cell growth, suggesting that Rg3RGE has potential as potential as a putative breast cancer therapeutic.

Effects of insulin and IGF on growth and functional differentiation in primary cultured rabbit kidney proximal tubule cells - Effects of IGF-I on Na+ uptake - (초대배양된 토끼 신장 근위세뇨관세포의 성장과 기능분화에 대한 insulin과 IGF의 효과 - Na+ uptake에 대한 IGF-I의 효과 -)

  • Han, Ho-jae;Park, Kwon-moo;Lee, Jang-hern;Yang, IL-suk
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.4
    • /
    • pp.783-794
    • /
    • 1996
  • It has been suggested that ion transport systems are intimately involved in mediating the effects of growth regulatory factors on the growth of a number of different types of animal cells in vivo. The functional importance of the apical membrane $Na^+/H^+$ antiporter in the renal proximal tubule is evidenced by estimates that this transporter mediates the reabsorption of approximately one third of the filtered load of sodium and the bulk of the secretion of hydrogen ions. This study was designed to investigate the pathway utilized by IGF-I in regulating sodium transport in primary cultured renal proximal tubule cells. Results were as follows : 1. $Na^+$ was observed to accumulate in the primary cells as a function of time. Raising the concentration of extracellular NaCl induced an decrease in $Na^+$ uptake compared with control cells in a dose dependent manner. The rate of $Na^+$ uptake into the primary cells was about two times higher in the absence of NaCl($40.11{\pm}1.76pmole\;Na^+/mg\;protein/min$) than in the presence of 140mM NaCl($17.82{\pm}0.94pmole\;Na^+/mg\;protein/min$) at the 30 minute uptake. 2. $Na^+$ uptake was inhibited by IAA($1{\times}10^{-4}M$) or valinomycin($5{\times}10^{-6}M$) treatment($50.51{\pm}4.04$ and $57.65{\pm}2.27$ of that of control, respectively). $Na^+$ uptake by the primary proximal tubule cells was significantly increased by ouabain($5{\times}10^{-5}M$) treatment($140.23{\pm}3.37%$ of that of control). When actinomycin D($1{\times}10^{-7}M$) or cycloheximide($4{\times}10^{-5}M$) was applied, $Na^+$ uptake was decreased to $90.21{\pm}2.39%$ or $89.64{\pm}3.69%$ of control in IGF-I($1{\times}10^{-5}M$) treated cells, respectively. 3. Extracellular cAMP decreased $Na^+$ uptake in a dose-dependent manner($10^{-8}-10^{-4}M$). IBMX($5{\times}10^{-5}M$) also inhibited $Na^+$ uptake. Treatment of cells with pertussis toxin(50pg/ml) or cholera toxin($1{\mu}g/ml$) inhibited $Na^+$ uptake. Extracellular PMA decreased $Na^+$ uptake in a dose-dependent manner(1-100ng/ml). 100 ng/ml PMA concentration significantly inhibited $Na^+$ uptake in IGF-I treated cells. However, staurosporine($1{\times}10^{-7}M$) had no effect on $Na^+$ uptake. When PMA and staurosporine were added together, the inhibition of $Na^+$ uptake was not observed. In conclusion, sodium uptake in primary cultured rabbit renal proximal tubule cells was dependent on membrane potentials and intracellular energy levels. IGF-I stimulates sodium uptake through mechanisms that involve some degree of de novo protein and/or RNA synthesis, and cAMP and/or PKC pathway mediating the action mechanisms of IGF-I.

  • PDF

EFFECTS OF SIGNAL TRANSDUCTION PATHWAY IN THE RAS-INDUCED CELLULAR TRANSFORMATION OF HUMAN EPITHELIAL CELLS IN CULTURE (인체 상피세포에서 ras-종양유전자의 발암화가 신호 전달 기작에 미치는 영향)

  • Jang, Do-Geun;Byeon, Ki-Jeong;Kim, Chin-Soo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.26 no.3
    • /
    • pp.254-261
    • /
    • 2000
  • The present study has attempted to look into the mechanism of ras-induced carcinogenesis in a human epithelial cell system. Human epithelial cells immortalized with Ad12-SV40 hybrid virus were used to assess carcinogenic potential of the ras-oncogene. Cells transfected with pSV2-ras showed characteristics of cellular transformation. The transformation parameters such as cell density, soft-agar colony formation, and cell aggregation were significantly increased in the cells expressing ras oncoprotein. In addition, the duration required for the appearance of foci was shortened in the ras-transfected cells. Consistent with other reports, our results demonstrated an evidence that the ras-oncogene induced the cellular transformation of human epithelial cell system. When a high concentration of glucocorticoid was added into the media, transformation process was accelerated. It is speculated that glucocorticoid may provide an advantageous environment for the proliferation of the transformed cells. The induction of the intracellular free calcium concentrations following agonist treatment was significantly lower in the transformed cells than in the control cells. These effects were more manifested in the presence of extracellular cacium, indicating that the transformation process may alter the influx pathway of extracellular calcium. The induction of $IP_3$ following agonist treatment was also lower in the transformed cells than in the control cells. Thus, it is suggested that phospholipase C-coupled pathway was down-regulated in the process of the ras-induced transformation. While the levels of $TGF-{\beta}_1$ and PAI-2 mRNAs were decreased, the level of fibronectin mRNA was increased. The results indicate that mechanism of the ras-induced transformation may be associated with the altered expressions of growth regulatory factors. The present study demonstrates an evidence that the ras-induced cellular transformation may be associated with alteration of signal transduction and growth regulatory factors. The study will contribute to improve the understanding of molecular mechanism of epithelium-derived cancers including oral cancer.

  • PDF

Effects of Cultivated Wild Panax ginseng Extract on the Proliferation, Differentiation and Mineralization of Osteoblastic MC3T3-E1 Cells (산양삼(cultivated wild Panax ginseng) 추출물이 조골세포 활성에 미치는 영향)

  • Seo, Hyun-Ju;Eo, Hyun Ji;Kim, Hyun Jun;Jeon, Kwon Seok;Park, Gwang Hun;Hong, Se Chul;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.33 no.4
    • /
    • pp.227-236
    • /
    • 2020
  • Panax ginseng C.A. Meyer (P. ginseng) is known to exert a wide range of pharmacological effects both in vitro and in vivo. Although studies on ginsenoside, antioxidant activity, and anticancer effect of the cultivated wild Panax ginseng (CWP) have been conducted, there is little research on the effect of CWP extract on bone metabolism. In this study, we investigated the potential anti-osteoporotic properties of CWP on the growth and differentiation of MC3T3-E1 cells. CWP significantly increased the viability and proliferation of MC3T3-E1 cells. CWP activated intracellular alkaline phosphatase (ALP) activity in MC3T3-E1 cells. In addition, CWP increased the mineralized nodules in MC3T3-E1 cells. Furthermore, CWP increased the expression of genes such as Runx2, ALP, OPN and OCN associated with osteoblast growth and differentiation in a dose-dependent manner.

A study of Association of the H-FABP RFLP with Economic Traits of Pigs (돼지 H-FABP 유전자의 다형성 및 경제 형질과의 연관성 구명)

  • Choi, B.H.;Kim, T.H.;Lee, J.W.;Cho, Y.M.;Lee, H.Y.;Cho, B.W.;Cheong, I.C.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.703-710
    • /
    • 2003
  • The purpose of this study was to detect association between genetic variation and economic trait in the porcine heart type fatty acid-binding protein gene as a candidate gene for the traits related with growth and meat quality in pigs. The H-FABP is a 15-kDa protein expressed in several tissues with high demand for fat metabolism such as cardiac and skeletal muscle and lactating mammary gland. H-FABP is small intracellular protein involved in fatty acid transport from the plasma membrane to the site of $\beta$-oxidation and/or triacylglycerol or phospholipid synthesis. In this study, H-FABP PCR-RFLP was performed in F$_2$ population composed of 214 individuals from an intercross between Korean Native Boars and Landrace sows. PCR products from two primer sets within H-FABP gene were amplified in 850bp and 700bp. Digestion of PCR products with the restriction digestion enzymes HaeⅢ and HinfⅠ, revealed fragment length polymorphisms(RFLPs). The genotype frequencies from H-FABP/HaeⅢ was .29 for genotype DD, .53 for genotype Dd, and .15 for genotype dd, respectively. The genotype frequencies of HH, Hh, and hh from H-FABP/HinfⅠ was .38, .41 and .20, respectively, in the population. Relationships between their genotypes and economic traits were estimated. In H-FABP/HaeⅢ locus, there were specific genotypes(Dd and dd) associated with economic traits such as body weights at 3, 5, 12, and 30 week of age (p〈.05 to .001). The ‘d’ allele was associated with gaining of body weight. In H-FABP/HinfⅠ locus, Genotypes of HH and Hh associated with growth traits such as body weights at 5, 12, and 30 week of age (p〈.05 or p〈.001) and back fat thickness, body fat including abdominal and trimmed fat (p〈.001) and intramuscular fat(p〈.05) The ‘H’ allele was positively associated with gaining of body weight and fatness deposition. In conclusion, a significant association of the H-FABP gene from its genetic variation was found on body weight, intramuscular fat and backfat thickness.

Effect of Endothelial Cell Growth Factor and Cyclic AMP Increasers on the Proliferation of Human Omental Microvascular Endothelial Cells (사람의 대망미세혈관내피세포 증식에 대한 내피세포성장인자 및 CYCLIC AMP 증가물질의 효과)

  • Kim, Won-Gon;Kim, Jong-Man;Yu, Se-Yeong
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.463-470
    • /
    • 1995
  • Complete prelining of artificial vascular grafts with autologous endothelial cells may be one of the ideal solutions to obtain a nonthrombogenlc blood-contacting surface. To establish an intact endothelial cell monolayer on a prosthetic surface at the time of implantation,a sufficient number of endothelial cells and adequate propagation condition In cell culture are prerequisites. In this experimental study, endothelial cells from microvessels of adult human oriental adipose tissue were enzymatically harvested, and optimal culture conditions for proliferation of the endothelial cells in cell culture were examined. Human oriental adipose tissue was digested with collagenase and endothelial cells were separated from other stromal elements by mesh filtration method. Cultured cells were identified as endothelial cells by immunofluorescent staining for factor VIII-related antigen. Proliferation in usual 20% fetal bovine serum (FBS) medium or medium containing endothelial cell growth factor (ECGF)(5 ng/ml) and heparin (HEP)(1,000 units/ml) were compared,and the effects of adding compounds that increase intracellular cyclic adenosine monophosphate levels, that is,cholera toxin (CT)(1 $\mu\textrm{g}$/ml) and isobutylmethylxanthine (IBMX)(0.2 ml),were also analyzed. In total,following eight media groups were examined. 1) FBS medium + ECGF + HEP, 2) FBS medium + ECGF + HEP+CT, 3) FBS medium+ECGF+HEP+lBMX, 4) FBS medium+ECGF+HEP+CT+ IBMX, 5) FBSmedium, 6) FBS medium +CT, 7) FBS medium + IBMX, 8) FBS medium + CT + IBMX. It was shown that the medium containing ECGF + HEP with or without cholera toxin was most efficient in Stimulating cell proliferation. IBMX was considered to have antagonistic effect to ECGF. Among experimental groups without ECGF and HEP, the addition of cholera toxin and IBMX was shown to significantly potentiate cell proliferation. This results could provide a practical method for use of cultured human endothelial cells for endothelial cell seeding of cardiovascular prosthetic device, particularly in small-diameter vascular grafts.

  • PDF

Expression of Phospholipase C Isozymes in Human Lung Cancer Tissues (인체 폐암조직에서 Phospholipase C 동위효소의 발현양상)

  • Hwang, Sung-Chul;Mah, Kyung-Ae;Choi, So-Yeon;Oh, Yoon-Jung;Choi, Young-In;Kim, Deog-Ki;Lee, Hyung-Noh;Choi, Young-Hwa;Park, Kwang-Ju;Lee, Yi-Hyeong;Lee, Kyi-Beom;Ha, Mahn-Joon;Bae, Yoon-Su
    • Tuberculosis and Respiratory Diseases
    • /
    • v.49 no.3
    • /
    • pp.310-322
    • /
    • 2000
  • Background : Phospholipase C(PLC) plays an important role in cellular signal transduction and is thought to be critical in cellular growth, differentiation and transformation of certain malignancies. Two second messengers produced from the enzymatic action of PLC are diacylglycerol (DAG) and inositol 1, 4, 5-trisphosphate (IP3). These two second messengers are important in down stream signal activation of protein kinase C and intracellular calcium elevation. In addition, functional domains of the PLC isozymes, such as Src homology 2 (SH2) domain, Src homology 3 (SH3) domain, and pleckstrin homology (PH) domain play crucial roles in protein translocation, lipid membrane modificailon and intracellular memrane trafficking which occur during various mitogenic processes. We have previously reported the presence of PLC-${\gamma}1$, ${\gamma}2$, ${\beta}1$, ${\beta}3$, and ${\delta}1$ isozymes in normal human lung tissue and tyrosine-kinase-independent activation of phospholipase C-${\gamma}$ isozymes by tau protein and AHNAK. We had also found that the expression of AHNAK protein was markedly increased in various mstologic types of lung can∞r tissues as compared to the normallungs. However, the report concerning expression of various PLC isozymes in lung canærs and other lung diseases is lacking. Therefore, in this study we examined the expression of PLC isozymes in the paired surgical specimens taken from lung cancer patients. Methods : Surgically resected lung cancer tissue samples taken from thirty seven patients and their paired normal control lungs from the same patients, The expression of various PLC isozymes were studied. Western blot analysis of the tissue extracts for the PLC isozymes and immunohistochemistry was performed on typical samples for localization of the isozyme. Results : In 16 of 18 squamous cell carcinomas, the expression of PLC-${\gamma}1$ was increased. PLC-${\gamma}1$ was also found to be increased in all of 15 adenocarcinoma patients. In most of the non-small cell lung cancer tissues we had examined, expression of PLC-${\delta}1$ was decreased. However, the expression of PLC-${\delta}1$ was markedly increased in 3 adenocarcinomas and 3 squamous carcinomas. Although the numbers were small, in all 4 cases of small cell lung cancer tissues, the expression of PLC-${\delta}1$ was nearly absent. Conclusion : We found increased expression of PLC-${\gamma}1$ isozyme in lung cancer tissues. Results of this study, taken together with our earlier findings of AHNAK protein-a putative PLD-${\gamma}$, activator-over-expression, and the changes observed in PLC-${\delta}1$ in primary human lung cancers may provide a possible insight into the derranged calcium-inositol signaling pathways leading to the lung malignancies.

  • PDF

Characterization of the Stretch-Activated Channel in the Hamster Oocyte (햄스터난자에서 신전에 의해 활성화되는 통로의 성상)

  • Kim, Y.-M.;Hong, S.-G.
    • Journal of Embryo Transfer
    • /
    • v.19 no.2
    • /
    • pp.89-99
    • /
    • 2004
  • Stretch-activated channels (SACs) responds to membrane stress with changes in open probability (Po). They play essential roles in regulation of cell volume and differentiation, vascular tone, and in hormonal secretion. SACs highly present in Xenopus oocytes and Ascidian oocytes are suggested to be involved in the regulation of pH and fluid transport to balance the osmotic pressure, but remain unclear in mammanlian oocytes. This study was investigated to find the presence of SACs in hamster oocytes and to examine their electrophysiological properties. To infer a role of SAC in relation to the development of early stage, we followed up to the stage of two-cell zygote with patch clamp techniques. Single channels were elicited by negative pressure (lower than ­15 cm$H_2O$). Interestingly, SACs were dependent on permeable cations such as $Na^+$ or $K^+$. As permeable cation removed from both sides across the membrane, SAC activity completely disappeared. When permeable cations present only in intracellular compartment, outward currents appeared at positive potentials. In contrast to this, inward currents occurred only at the negative voltage when permeable cation absent in cell interior. These result suggests that SAC carry cations through the nonselective cation channel (NSC channel). Taken together, we found that stretch activated channels present in hamster oocyte and the channel may carry cations through NSC channels. This stretch activated-NSC channels may play physiological role(s) in oocyte growth, maturation, fertilization and embryogenesis in fertilized oocytes to two-cell zygotes of hamster.