• 제목/요약/키워드: intracellular complex

검색결과 155건 처리시간 0.027초

Sphingosine 1-phosphate mediated suppression of leptin secretion in rat adipocytes.

  • Jun, Dong-Jae;Kim, Kyong-Tai
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2001년도 학술 발표회 진행표 및 논문초록
    • /
    • pp.49-49
    • /
    • 2001
  • Sphingosine 1-phosphate is a metabolite of complex sphingolipids that acts as both a second messenger and as a high-affinity ligand for cell surface receptor. Since the possible involvement of sphingosine 1-phosphate has not been investigated in adipocyte, we examined the response of intracellular calcium ([Ca$^{2+}$]$_{i}$) and intracellular cAMP ([cAMP]$_{i}$ and the effect of sphingosine 1-phosphate on adipocyte function using rat primary adipocyte.(omitted)ted)

  • PDF

VEGF siRNA Delivery by a Cancer-Specific Cell-Penetrating Peptide

  • Lee, Young Woong;Hwang, Young Eun;Lee, Ju Young;Sohn, Jung-Hoon;Sung, Bong Hyun;Kim, Sun Chang
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권3호
    • /
    • pp.367-374
    • /
    • 2018
  • RNA interference provides an effective tool for developing antitumor therapies. Cell-penetrating peptides (CPPs) are delivery vectors widely used to efficiently transport small-interfering RNA (siRNA) to intracellular targets. In this study, we investigated the efficacy of the cancer-specific CPP carrier BR2 to specifically transport siRNA to cancer-target cells. Our results showed that BR2 formed a complex with anti-vascular endothelial growth factor siRNA (siVEGF) that exhibited the appropriate size and surface charge for in vivo treatment. Additionally, the BR2-VEGF siRNA complex exhibited significant serum stability and high levels of gene-silencing effects in vitro. Moreover, the transfection efficiency of the complex into a cancer cell line was higher than that observed in non-cancer cell lines, resulting in downregulated intracellular VEGF levels in HeLa cells and comprehensively improved antitumor efficacy in the absence of significant toxicity. These results indicated that BR2 has significant potential for the safe, efficient, and specific delivery of siRNA for diverse applications.

연두금파리 종령유충의 복신세포의 미세구조 (Ultrastructure of the Ventral Nephrocytes in the Larva of Lucilia illustris Meigen)

  • 조정숙;김관선;김우갑
    • Applied Microscopy
    • /
    • 제21권2호
    • /
    • pp.29-38
    • /
    • 1991
  • Ventral nephrocytes in the larva of the Lucilia illustris comprise ellipsoid cells situated onto the salivary glands. The cells are $60{\sim}100{\mu}m$ in diameter. Junctional complex beneath the basement membrane hold the plasma membrane in a even contour. Intracellular channels from the juntion complex are well developed at the cortex part of the cell. Coated vesicles pinched off from the channels seems to be connected with the ${\alpha}$-vacuoles via the tubular elements, which is regared as selective absorption system from the hemolymph. Two nuclei are sometimes observed in the medulla part of the cell. Ventral nephrocytes contain well-developed rough endoplasmic reticulum and Golgi complex, and numerous mitochondria. These cellular organelles synthesize lysosome. The lysosome not only digest some cell organells but also seems to be related with the ${\beta}$-vacuoles.

  • PDF

배양된 이자섬 $\beta$세포의 미세구조적 변화와 인슐린 분포 양상 (Ultrastructural Change and Insulin Distribution of the Cultured Pancreatic Islet $\beta$-cell)

  • 민병훈;김수진
    • Applied Microscopy
    • /
    • 제37권4호
    • /
    • pp.249-258
    • /
    • 2007
  • 이자섬은 이자를 구성하는 외분비조직에 둘러싸여 존재하는 내분비세포의 집단으로, 이자섬에서 분비되는 인슐린은 $\beta$세포에서 분비되는 호르몬이며, 세포질의 리보좀에서 합성되고 골지체를 경유하여 세포질로 방출되는 기작을 가지고 있다. 충분한 양의 이자섬 이식은 인슐린 의존형 당뇨병인 제1형 당뇨병에서 정상혈당을 회복시키고, 당뇨 합병증을 방지할 수 있는 치료방법으로 사용되고 있다. 하지만 당뇨병 환자에게 이식을 위한 이자섬의 양에 비해 공여자로부터 증여된 이자섬의 양은 제한적이다. 이러한 문제점은 이자섬의 증식으로 연구되고 있으나, 배양된 이자섬이 정상 조직내의 이자섬과 형태적 기능적으로 동일한 것인지에 관한 연구는 미비하였다. 따라서 본 연구에서는 분리된 이자섬과 배양된 이자섬을 구성하는 세포들의 내부구조의 변화를 주사전자현미경, 투과전자현미경을 이용하여 세포의 미세구조를 확인하고, 인슐린 항체를 이용한 $\beta$세포 내의 인슐린 분포양상을 확인하여 다음과 같은 결과를 얻었다. 분리된 이자섬의 $\beta$세포는 일반적인 핵 미토콘드리아, 세포질세망 그리고 인슐린 과립이 분포하고, 배양된 이자섬 $\beta$세포의 경우 분리된 이자섬에 비하여 일반적인 핵의 모습과 부피가 증가한 세포질과 미토콘드리아, 세포질세망 그리고 골지체의 발달이 이루어지는 것으로 관찰되었다. 인슐린 과립의 경우 분리된 이자섬에 비해 감소하며, 세포막 주위에 분포하는 것으로 관찰되었다. 배양된 이자섬에서 관찰되는 인슐린 과립 분포의 변화, 세포질세망의 증가, 골지체의 발달은 배양된 이자섬 $\beta$세포의 인슐린 생성 분비 기능의 향상과 부피의 증가가 이루어지기 위한 세포 내부의 형태적 변화가 이루어지는 것으로 추측된다.

항당뇨 물질 Aloe QDM complex의 세포내 포도당 흡수촉진 효능 (Effects of Antidiabetic Agent, Aloe QDM complex, on Intracellular Glucose Uptake)

  • 임선아;김기향;신은주;도선길;조태형;박영인;이종길
    • 생약학회지
    • /
    • 제44권1호
    • /
    • pp.75-82
    • /
    • 2013
  • Previous studies have shown that Aloe QDM complex, which is consisted of chromium (Cr), aloesin (ALS) and processed Aloe vera gel (PAG), exert antidiabetic activity in a high fat diet-induced mouse model of type 2 diabetes. In this study we examined the mechanism of the antidiabetic activity of the Aloe QDM complex. Rat myoblast cell line L6 cells were cultured in the presence of Cr, ALS, and PAG alone and in combinations, and then the capability of the cells to uptake glucose was examined using radiolabeled glucose. All of the 3 agents, Cr, ALS and PAG, exerted glucose uptake-enhancing activity in L6 cells. The most potent capability to uptake glucose was observed when L6 cells were cultured with the Aloe QDM complex. The activity of the Aloe QDM complex to enhance glucose uptake was prominent in conditions where existing insulin concentrations are low. We also examined the effects of the Aloe QDM complex on the plasma membrane expression of GLUT4 in L6 cells. The Aloe QDM complex increased the content of GLUT4 in the plasma membrane, while decreasing the content of GLUT4 in the light microsome. Taken together, these results show that the antidiabetic activity of the Aloe QDM complex is at least in part due to the stimulation of glucose uptake into the muscle cells, and this activity of the Aloe QDM complex is mediated through the enhancement of the translocation of GLUT4 into the plasma membrane.

Targeting Cell-Cell and Cell-Matrix Interactions and Its Therapeutic Applications

  • Kim, In-San
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-1
    • /
    • pp.100-101
    • /
    • 2003
  • Cell-cell and cell-matrix interaction is clearly required for metazoans not only to hold their cells together but also to conduct more sophisticated biological processes. Each cell has adhesion molecules on its cell membrane to link extracellular matrix and adjacent cells to the intracellular cytoskeleton, and also to transduce signals. In complex metazoans, information is transmitted from one cell to another by mechanisms such as direct intercellular communication, soluble signal molecules among distant cells, and local cellular environments formed by highly specialized extracellular matrix. (omitted)

  • PDF

Effects of Mitochondrial Reactive Oxygen Species on Neuronal Excitability in Rat Spinal Substantia Gelatinosa Neurons

  • Lee, Hae-In;Park, A-Reum;Chun, Sang-Woo
    • International Journal of Oral Biology
    • /
    • 제37권1호
    • /
    • pp.17-23
    • /
    • 2012
  • Recent studies indicate that reactive oxygen species (ROS) are critically involved in persistent pain primarily through spinal mechanisms, and that mitochondria are the main source of ROS in the spinal dorsal horn. To investigate whether mitochondrial ROS can induce changes in membrane excitability on spinal substantia gelatonosa (SG) neurons, we examined the effects of mitochondrial electron transport complex (ETC) substrates and inhibitors on the membrane potential of SG neurons in spinal slices. Application of ETC inhibitors, rotenone or antimycin A, resulted in a slowly developing and slight membrane depolarization in SG neurons. Also, application of both malate, a complex I substrate, and succinate, a complex II substrate, caused reversible membrane depolarization and enhanced firing activity. Changes in membrane potential after malate exposure were more prominent than succinate exposure. When slices were pretreated with ROS scavengers such as phenyl-N-tert-buthylnitrone (PBN), catalase and 4- hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), malate-induced depolarization was significantly decreased. Intracellular calcium above $100{\mu}M$ increased malateinduced depolarization, witch was suppressed by cyclosporin A, a mitochondrial permeability transition (MPT) inhibitor. These results suggest that enhanced production of spinal mitochondrial ROS can induce nociception through central sensitization.

Regulation of Glycogen Concentration by the Histidine-Containing Phosphocarrier Protein HPr in Escherichia coli

  • Koo, Byung-Mo;Seok, Yeong-Jae
    • Journal of Microbiology
    • /
    • 제39권1호
    • /
    • pp.24-30
    • /
    • 2001
  • In addition to effecting the catalysis of sugar uptake, the bacterial phosphoenolpyruvate::sugar phosphotransferase system regulates a variety of physiological processes. In a previous paper [Seok et al.,(1997) J. Biol. Chem. 272, 26511-26521], we reported the interaction with and allosteric regulation of Esiherichia coli glycogen phosphorylase activity by the histidine-containing phosphocarrier protein HPr in vitro. Here, we show that the specific interaction between HPr and glycogen phosphorylase occurs in vivo. To address the physiological role of the HPr-glycogen phosphorylase complex, intracellular glycogen levels were measured in E. coli strains transformed with various plasmids. While glycogen accumulated during the transition between exponential and stationary growth phases in wildtype cells, it did not accumulate in cells overproducing HPr or its inactive mutant regardless of the growth stage. From these results, we conclude that HPr mediates crosstalk between sugar uptake through the phosphoenolpyruvate:sugar phosphotransferase system and glycogen breakdown. The evolutionary significance of the HPr-glycogen phosphorylase complex is suggested.

  • PDF

고도 호열성 Archaebacterium Thermococcus profundus가 생산하는 Amylolytic Enzymes (Amylolytic Enzymes Produced from Hyperthermophilic Archaebactorium Thermococcus profundus)

  • 정영철;김경숙;노승환
    • 한국식품영양학회지
    • /
    • 제7권4호
    • /
    • pp.259-266
    • /
    • 1994
  • The hyperthermophilic archaebacterium Thermococcus profundus Isolated from a deep-sea hydrothermal vent system, produced several amylolytic enzymes such as extracellular amylase and pullulanase, intracellular a-1,4-91ucosidase in respone to the presence of complex carbohydrates In the growth medium. This strain showed high activities on 0.5% maltose than on complex carbohydrates One of the amylases was partially purified by ammonium sulfate precipitation, DEAE-Toyopearl chromatography. The amylase exhibited maximal activity at pH 5.5 and 80$^{\circ}C$, and was stable in the range of pH 5.5 to 9.5 and up to 80$^{\circ}C$ for 30 min. The enzyme activity was no dependence on Ca2+ and not inhibited by detergents. The amylase hydrolyzed soluble starch, amylose, amylopectin and glycogen to produce maltose and maltotriose with trace amounts of glucose, but not pullulan and ${\alpha}$-, ${\beta}$-, ${\gamma}$-cyclodextrin. Malto-oligosaccharides ranging from maltotetraose to maltoheptaose were hydrolyzed in an endo fashion.

  • PDF

Understanding the Unfolded Protein Response (UPR) Pathway: Insights into Neuropsychiatric Disorders and Therapeutic Potentials

  • Pitna Kim
    • Biomolecules & Therapeutics
    • /
    • 제32권2호
    • /
    • pp.183-191
    • /
    • 2024
  • The Unfolded Protein Response (UPR) serves as a critical cellular mechanism dedicated to maintaining protein homeostasis, primarily within the endoplasmic reticulum (ER). This pathway diligently responds to a variety of intracellular indicators of ER stress with the objective of reinstating balance by diminishing the accumulation of unfolded proteins, amplifying the ER's folding capacity, and eliminating slow-folding proteins. Prolonged ER stress and UPR irregularities have been linked to a range of neuropsychiatric disorders, including major depressive disorder, bipolar disorder, and schizophrenia. This review offers a comprehensive overview of the UPR pathway, delineating its activation mechanisms and its role in the pathophysiology of neuropsychiatric disorders. It highlights the intricate interplay within the UPR and its profound influence on brain function, synaptic perturbations, and neural developmental processes. Additionally, it explores evolving therapeutic strategies targeting the UPR within the context of these disorders, underscoring the necessity for precision and further research to effective treatments. The research findings presented in this work underscore the promising potential of UPR-focused therapeutic approaches to address the complex landscape of neuropsychiatric disorders, giving rise to optimism for improving outcomes for individuals facing these complex conditions.