• Title/Summary/Keyword: intracellular calcium

Search Result 471, Processing Time 0.025 seconds

Immunoreactivity of Calcium-Binding Proteins in the Central Auditory Nervous System of Aged Rats

  • Hong, Seok-Min;Chung, Seung-Young;Park, Moon-Sun;Huh, Young-Buhm;Park, Moon-Suh;Yeo, Seung-Gun
    • Journal of Korean Neurosurgical Society
    • /
    • v.45 no.4
    • /
    • pp.231-235
    • /
    • 2009
  • Objective : While many factors contribute to aging, changes in calcium homeostasis and calcium related neuronal processes are likely to be important. High intracellular calcium is toxic to cells and alterations in calcium homeostasis are associated with changes in calcium-binding proteins, which confine free $Ca^{2+}$. We therefore assayed the expression of the calcium binding proteins calretinin and calbindin in the central auditory nervous system of rats. Methods : Using antibodies to calretinin and calbindin, we assayed their expression in the cochlear nucleus, superior olivary nucleus, inferior colliculus, medial geniculate body and auditory cortex of young (4 months old) and aged (24 months old) rats. Results : Calretinin and calbindin staining intensity in neurons of the cochlear nucleus was significantly higher in aged than in young rats (p<0.05) The number and staining intensity of calretinin-positive neurons in the inferior colliculus, and of calbindin-positive neurons in the superior olivary nucleus were greater in aged than in young rats (p<0.05). Conclusion : These results suggest that auditory processing is altered during aging, which may be due to increased intracellular $Ca^{2+}$ concentration, consequently leading to increased immunoreactivity toward calcium-binding proteins.

Intracellular Calcium Concentration in the Glutamate-induced Cytotoxicity in PCl2 Cell (Glutamate에 의한 세포내 칼슘농도변화와 세포독성과의 관계)

  • 황인영;신임철;송연숙;성민제;박혜지;이윷모;박철범;이명구;오기완
    • Toxicological Research
    • /
    • v.18 no.4
    • /
    • pp.355-362
    • /
    • 2002
  • Pathophysiological elevation of intracellular calcium concentration ($[Ca^{2+}]_1$) in the neuron has been considered as an important responsible factor in the neuronal cell damages. However the mechanism of increase of $[Ca^{2+}]_1$ and the relationship between $[Ca^{2+}]_1$ level and cytotocixity have not been fully demonstrated. In the present study, real-time alteration of $[Ca^{2+}]_1$and cellular response (cell damages) in the pheochromocytoma cells (PC12) stimulated by glutamate were investigated. Glutamate dose dependently decreased cell viability determined propidium iodide fluorescence method and morphology change. Conversely related with cell damages, glutamate dose dependently increased the level of[Ca$^{2+}$$_{i}$ . To investigate the mechanism of glutamate-induced increase of $[Ca^{2+}]_1$,$[Ca^{2+}]_1$, was first measured in the cell cultured in calcium free media and in the presence of dantrolene, an inhibitor of calcium release from ryanodine receptor located in endoplasmic reticulum (ER). Similar to the increase$[Ca^{2+}]_1$ in the calcium-containing media, glutamate dose dependently increased $[Ca^{2+}]_1$ in the cell cultured in free calcium media. However pretreatment (2 hr) with 20~50 $\mu\textrm{M}$ dantrolene substantial lowered glutamate-induced increase of $[Ca^{2+}]_1$, suggesting that release of calcium from ER may be major sourse of increase of $[Ca^{2+}]_1$ in PC12 cells. Dantrolene-induced inhibition of $[Ca^{2+}]_1$ resulted in recovery of cytotoxicity by glutamate. Relevance of N-methy-D-aspartate (NMDA) receptor, a type of glutamte receptor on glutamate-induced incense of $[Ca^{2+}]_1$,$[Ca^{2+}]_1$ was also determined in the cells pretreated (2 hr) with NMDA receptor antagonist MK-80l. Glutamate-induced increase of $[Ca^{2+}]_1$ was reduced by MK-801 dose dependently. Furthermore, glutamate-induced cytotoxicity was also prevented by MK-80l. These results demonstrate that glutamte increase $[Ca^{2+}]_1$ dose dependently and thereby cause cytotoxicity. The increase of $[Ca^{2+}]_1$ may release from ER, especially through ryanodine receptor and/or through NMDA receptor Alteration of calcium homeostasis through disturbance of ER system and/or calcium influx through NMDA receptor could contribute glutamate-induced cell damages.s.

Polyamine Induces Apoptosis Through the Calcium Signaling in Human Prostate Cancer Cells (전립선암세포에 있어서 폴리아민에 의한 칼슘신호와 세포사멸)

  • Song Hwi-June;Kim Ji-Young;Yoo Mi-Ae;Chung Hae-Young;Kim Jong-Min;Kim Byeong-Gee
    • Journal of Life Science
    • /
    • v.16 no.3 s.76
    • /
    • pp.433-441
    • /
    • 2006
  • Polyamines are essential for the normal cell growth and differentiation. They are also known to have paradoxical dual effects on cell proliferation. In this paper we show that the excess amount of polyamines induces apoptosis through the modulation of calcium signaling in LNCaP human prostate cancer cells. Polyamines, particularly spermidine and spermine, stimulated cell proliferation at a lower concentration (under 10 ${\mu}M$), but it inhibited cell viability at a higher concentration (40 ${\mu}M$). The levels of intracellular $Ca^{2+}$ concentration were increased only at a high concentration of polyamines treatment without any noticeable changes at lower concentrations. Nifedipine did not alter the increase of polyamine-induced $Ca^{2+}$ levels, but flufenamic acid totally abolished the increase of intracellular $Ca^{2+}$ levels. These results mean that polyamines induce $Ca^{2+}$ influx from the surroundings through nonselective cation channels on the cell membrane. The expression of Bcl-2 protein was almost completely blocked, but the level of Bax protein was increased dramatically in the cells treated with high concentration of polyamine. The present study shows that polyamines at a high concentration induce apoptosis through the modulation of intracellular calcium signaling. The increase of intracellular calcium level induced by polyamines, was possibly a result from the extracellular calcium influx through the nonselective cation channels.

Analysis of interaction between intracellular spermine and transient receptor potential canonical 4 channel: multiple candidate sites of negatively charged amino acids for the inward rectification of transient receptor potential canonical 4

  • Kim, Jinsung;Moon, Sang Hui;Kim, Taewook;Ko, Juyeon;Jeon, Young Keul;Shin, Young-Cheul;Jeon, Ju-Hong;So, Insuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.101-110
    • /
    • 2020
  • Transient receptor potential canonical 4 (TRPC4) channel is a nonselective calcium-permeable cation channels. In intestinal smooth muscle cells, TRPC4 currents contribute more than 80% to muscarinic cationic current (mIcat). With its inward-rectifying current-voltage relationship and high calcium permeability, TRPC4 channels permit calcium influx once the channel is opened by muscarinic receptor stimulation. Polyamines are known to inhibit nonselective cation channels that mediate the generation of mIcat. Moreover, it is reported that TRPC4 channels are blocked by the intracellular spermine through electrostatic interaction with glutamate residues (E728, E729). Here, we investigated the correlation between the magnitude of channel inactivation by spermine and the magnitude of channel conductance. We also found additional spermine binding sites in TRPC4. We evaluated channel activity with electrophysiological recordings and revalidated structural significance based on Cryo-EM structure, which was resolved recently. We found that there is no correlation between magnitude of inhibitory action of spermine and magnitude of maximum current of the channel. In intracellular region, TRPC4 attracts spermine at channel periphery by reducing access resistance, and acidic residues contribute to blocking action of intracellular spermine; channel periphery, E649; cytosolic space, D629, D649, and E687.

Effects of $Ca^2+$ and Protein Kinase C on the Chick Myoblast Differentiation (Ca$^2+$ 및 Protein Kinase C가 배양한 계배근원세포의 분화에 미치는 영향)

  • 정기화;김세재;박정원;박영철;이정주
    • The Korean Journal of Zoology
    • /
    • v.32 no.1
    • /
    • pp.40-47
    • /
    • 1989
  • Alteration of intracellular calcium ion Concentration by adding of either calcium ionophore A23187 or EGTA in culture medium at 24 hr after cell plating resulted in remarkable changes in the progression of differentiation of chick embryo myoblast. When separated myoblast proteins using two-dimensional gel electrophoresis, synthesis patterns of several proteins changed upon the addition of either A23187 or EGTA. Treatment of A23187 and calciumactivated neutral protease at 24 hr after initial plating caused an increase in the rate of fusion compared to control culture. However, EGTA inhibited the myoblast fusion to a marked degree. A23187 treated at 24hr also increased the activity of protein kinase C during the fusionprogressed period. It seems that intracellular calcium ion plays an important role in the myoblast differentiation in vitro together with the protein kinase C and calcium-activated neutral protease.

  • PDF

Adenosine Receptors Mediated Intracellular Calcium in Cumulus Cells Involved in the Maintenance of First Meiotic Arrest

  • Hwang, Heekyung;Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.17 no.2
    • /
    • pp.141-147
    • /
    • 2013
  • Keeping the intact germinal vesicle (GV) is essential for maintaining the capacity of mammals including human. It is maintained by very complex procedures along with folliculogenesis and is a critical step for getting competent oocyte. So far, a few mechanisms involved in folliculogenesis are known but GV arrest mechanisms are largely unrevealed. Cyclic AMP, a adenosine derived substance, have been used as inhibitor of germinal vesicle breakdown as a putative oocyte maturation inhibitor. In this study, we examined the potency of adenosine as GV maintainer and a possible signaling mediator for that. A1, A2b, and A3 were detected in cumulus cells of cumulus enclosed-oocyte (CEO). Intact of germinal vesicle was not kept like in follicle but the spontaneous maturation was inhibited by exogenous adenosine. It is inhibited with concentration dependent manners. Intracellular calcium level of cumulus was extensively increased after adenosine treatment. Based on these results it is suggested that one of the pathway for GV arrest by adenosine and its receptors is calcium mediated signaling pathway in CEO.

Regulation of Cumulus Expansion of Porcine Cumulus-Oocyte Complexes in vitro: Involvement of cAMP and Calcium (한국인에 대한 지문과 장문의 정량적 분석)

  • 황긍연
    • The Korean Journal of Zoology
    • /
    • v.30 no.2
    • /
    • pp.117-139
    • /
    • 1987
  • The present experiments were carried out to investigate the mode of cAMP regulation of cumulus expansion in pig. Intracellular level of cAMP in the cumulus cells was modulated by culturing porcine cumulus oocyte complexes (COC's) with forskolin, an adenylate cyclase stimulator and 3-isobutyl-1-methylxanthine (IBMX), a phosphodiesterase inhibitor. The role of calcium in the hormone induced cumulus expansion process was also studied. Forskolin in the medium stimulated cumulus expansion from the concentration of 0.01 $\mu$M and induced full expansion at l-10 $\mu$M In contrast, IBMX in the medium (20-180 $\mu$M) failed to induce the expansion. Verapamil, a calcium ion transport blocker, suppressed follicle stimulating hormone(FSH)-induced cumulus expansion in a dose dependent fashion (0.002-0. 2 mM) when the COC's were exposed to the drugs during culture period (32 hr). But verapamil did not interfere with the triggering action of FSH during early four hours of culture period. The data presented here showed that adenylate cyclase in the porcine cumulus cells may play a key role in the regulation of the intracellular cAMP level and calcium ion may be involved in the later period of cumulus expansion process.

  • PDF

PKHD1 Gene Silencing May Cause Cell Abnormal Proliferation through Modulation of Intracellular Calcium in Autosomal Recessive Polycystic Kidney Disease

  • Yang, Ji-Yun;Zhang, Sizhong;Zhou, Qin;Guo, Hong;Zhang, Ke;Zheng, Rong;Xiao, Cuiying
    • BMB Reports
    • /
    • v.40 no.4
    • /
    • pp.467-474
    • /
    • 2007
  • Autosomal recessive polycystic kidney disease (ARPKD) is one of the important genetic disorders in pediatric practice. Mutation of the polycystic kidney and hepatic disease gene 1 (PKHD1) was identified as the cause of ARPKD. The gene encodes a 67-exon transcript for a large protein of 4074 amino acids termed fibrocystin, but its function remains unknown. The neoplastic-like in cystic epithelial proliferation and the epidermal growth factor/epidermal growth factor receptor (EGF/EGFR) axis overactivity are known as the most important characteristics of ARPKD. Since the misregulation of $Ca^{2+}$ signaling may lead to aberrant structure and function of the collecting ducts in kidney of rat with ARPKD, present study aimed to investigate the further mechanisms of abnormal proliferation of cystic cells by inhibition of PKHD1 expression. For this, a stable PKHD1-silenced HEK-293T cell line was established. Then cell proliferation rates, intracellular $Ca^{2+}$ concentration and extracellular signal-regulated kinase 1/2 (ERK1/2) activity were assessed after treatment with EGF, a calcium channel blocker and agonist, verapamil and Bay K8644. It was found that PKHD1-silenced HEK-293T cell lines were hyperproliferative to EGF stimulation. Also PKHD1-silencing lowered the intracellular $Ca^{2+}$ and caused EGF-induced ERK1/2 overactivation in the cells. An increase of intracellular $Ca^{2+}$ in PKHD1-silenced cells repressed the EGF-dependent ERK1/2 activation and the hyperproliferative response to EGF stimulation. Thus, inhibition of PKHD1 can cause EGF-induced excessive proliferation through decreasing intracellular $Ca^{2+}$ resulting in EGF-induced ERK1/2 activation. Our results suggest that the loss of fibrocystin may lead to abnormal proliferation in kidney epithelial cells and cyst formation in ARPKD by modulation of intracellular $Ca^{2+}$.

Computational Analysis on Calcium Dynamics of Vascular Endothelial Cell Modulated by Physiological Shear Stress

  • Kang, Hyun-Goo;Lee, Eun-Seok;Shim, Eun-Bo;Chnag, Keun-Shik
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.3 no.2
    • /
    • pp.1-9
    • /
    • 2005
  • Flow-induced dilation of blood vessel is the result of a series of bioreaction in vascular endothelial cells(VEC). Shear stress change by blood flow in human artery or vein is sensed by the mechanoreceptor and responsible for such a chain reaction. The inositol(1,4,5)-triphophate($IP_3$) is produced in the first stage to elevate permeability of the intercellular membrane to calcium ions by which the cytosolic calcium concentration is consequently increased. This intracellular calcium transient triggers synthesis of EDRF and prostacyclin. The mathematical model of this VEC calcium dynamics is reproduced from the literature. We then use the Computational Fluid Dynamics(CFD) technique to investigate the blood stream dictating the VEC calcium dynamics. The pulsatile blood flow in a stenosed blood vessel is considered here as a part of study on thrombogenesis. We calculate the pulsating shear stress (thus its temporal change) distributed over the stenosed artery that is implemented to the VEC calcium dynamics model. It has been found that the pulsatile shear stress induces larger intracellular $Ca^{2+}$ transient plus much higher amount of EDRF and prostacyclin release in comparison with the steady shear stress case. It is concluded that pulsatility of the physiological shear stress is important to keep the vasodilation function in the stenosed part of the blood vessel.

  • PDF