• Title/Summary/Keyword: intra mode

Search Result 315, Processing Time 0.029 seconds

Digital Video Scrambling Methods using Motion Vector and Intra Prediction Mode (움직임 벡터와 인트라 예측 모드를 이용한 디지털 비디오 스크램블링 방법)

  • Ahn, Jin-Haeng;Jeon, Byeung-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.4 s.304
    • /
    • pp.133-142
    • /
    • 2005
  • In this paper, two digital video scrambling methods are proposed as simple means of the digital content protection techniques. One is inter block scrambling using motion vector, the other is intra block scrambling using intra prediction mode. The proposed inter block scrambling method distorts the original sequences by swapping horizontal and vertical components of motion vector. This method can be applied on most common video coding techniques such as MPEG-1, 2, 4, H.264, etc. The proposed intra block scrambling method distorts the original sequences by modifying intra prediction mode that is property of H.254 video coding technique. Both methods do not cause my bit rate increase after scrambling. Moreover, they have low complexity because they need only simple operation like XOR. Especially, the proposed intra block scrambling does not distort inter blocks directly. But inter blocks are distorted by error propagation effect as much as intra blocks. This paper introduces two new digital video scrambling method and verifies its effectiveness through simulation.

Fast Intra Mode Selection Algorithm for H.264/AVC Using Constraints of Frequency Characteristics (주파수 특성의 제약 조건들을 이용한 H.264/AVC를 위한 고속 화면 내 모드 선택 방법)

  • Jin, Soon-Jong;Park, Sang-Jun;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4C
    • /
    • pp.321-329
    • /
    • 2008
  • H.264/AVC video coding standard enables a considerably higher improvement in coding efficiency compared with previous standards such as MPEG-2, H.263 and MPEG-4. To achieve this, for each macro-block in H.264/AVC, Rate-Distortion Optimization (RDO) technique is employed to select the best motion vector, reference frame, and macro-block mode. As a result, computational complexity is increased significantly whereas RDO achieve higher improvement. This paper presents fast intra mode selection algorithm based on constraints of frequency characteristics which are derived from intra coding modes of H.264/AVC. First of all, we observe the features of each intra mode through the frequency analysis of image. And then proposed Frequency Error Costs (FECs) are calculated to select the best mode which has minimum cost. Computational complexity is considerably reduced because rate-distortion costs only calculate the candidate modes which are set of best mode and its neighbouring two modes. Experimental results show that proposed algorithm reduces the complexity dramatically maintaining the rate-distortion performance compared with H.264/AVC reference software.

H.264/AVC Fast Macroblock Mode Decision Algorithm (H.264/AVC 고속 매크로블록 모드 결정 알고리즘)

  • Kim, Ji-Woong;Kim, Yong-Kwan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.4 s.316
    • /
    • pp.8-16
    • /
    • 2007
  • For the improvement of coding efficiency, the H.264/AVC video coding standard employs new coding tools compared with existing coding standards. However, due to these new coding tools, the complexity of K264/AVC standard encoder is greatly increased. Specifically, the inter/intra mode decision method using RDO(rate-distortion optimization) technique is one of the most complex parts in H.264/AVC. In this paper, we focus on the complexity reduction in macroblock mode decision. In the proposed method, we reduce the complexity of the $4{\times}4$ mode decision process using $4{\times}4$ simple square filters, and using spatial block correlation method. Additionally, exploiting the best mode of sub_macroblock in $Inter8{\times}8$ mode, we proposed an algorithm to eliminate some intra modes in current macroblock mode decision process. In addition, we employed a method to raise the probability to select SKIP, $Intra16{\times}16$, and $Intra16{\times}16$ modes which usually show low complexity and low bitrate compared with other modes. From the simulation results, the proposed algorithm reduce the encoding time by maximum 83% of total, and reduce the bitrate of the overall sequences by $8{\sim}10%$ on the average compared with existing coding methods.

Error Concealment Using Intra-Mode Information Included in H.264/AVC-Coded Bitstream

  • Kim, Dong-Hyung;Jeong, Se-Yoon;Choi, Jin-Soo;Jeon, Gwang-Gil;Kim, Seung-Jong;Jeong, Je-Chang
    • ETRI Journal
    • /
    • v.30 no.4
    • /
    • pp.506-515
    • /
    • 2008
  • The H.264/AVC standard has adopted new coding tools such as intra-prediction, variable block size, motion estimation with quarter-pixel-accuracy, loop filter, and so on. The adoption of these tools enables an H.264/AVC-coded bitstream to have more information than was possible with previous standards. In this paper, we propose an effective spatial error concealment method with low complexity in H.264/AVC intra-frame. From information included in an H.264/AVC-coded bitstream, we use prediction modes of intra-blocks to recover a damaged block. This is because the prediction direction in each prediction mode is highly correlated to the edge direction. We first estimate the edge direction of a damaged block using the prediction modes of the intra-blocks adjacent to a damaged block and classify the area inside the damaged block into edge and flat areas. Our method then recovers pixel values in the edge area using edge-directed interpolation, and recovers pixel values in the flat area using weighted interpolation. Simulation results show that the proposed method yields better video quality than conventional approaches.

  • PDF

Fast Coding Mode Decision for H.264 Video Coding (H.264 동영상 압축을 위한 고속 부호화 모드 결정 방법)

  • 이제윤;전병우
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.165-173
    • /
    • 2004
  • H.264 is the newest international video coding standard that provides high coding efficiency. A macroblock in H.264 has 7 different motion-compensation block sizes in the Inter mode, and several different prediction directions in the Intra mode. In order to achieve as highest coding efficiency as possible, H.264 reference model employs complex mode decision technique based on rate-distortion (RD) optimization which requires high computational complexity. In this paper, we propose two techniques -'early SKIP mode decision' and 'selective intra mode decision' - which can further reduce the computational complexity. Simulation results show that without considerable performance degradation, the proposed methods reduce encoding time by 30% on average and save the number of computing rate-distortion cost by 72%.

Fast Intra Prediction Mode Decision Algorithm Using Directional Gradients For H.264 (방향성 기울기를 이용한 H.264를 위한 고속 화면내 예측 모드 결정 알고리즘)

  • Han, Hwa-Jeong;Jeon, Yeong-Il;Han, Chan-Hee;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.9
    • /
    • pp.1-8
    • /
    • 2009
  • H.264/AVC video coding standard uses the rate distortion optimization method which determines the best coding mode for macroblock(MB) to improve coding efficiency. Whereas RDO selects the best coding mode, it causes the heavy computational burden comparing with previous standards. To reduce the complexity, in this paper, a fast intra prediction mode decision algorithm using directional gradients is proposed. The proposed algorithm is composed of 2-path structure. In the first path, $16{\times}16$ intra prediction mode is determined using directional gradients. In the second path, 3 modes instead of 9 modes are chosen for RDO to decide the best mode for $4{\times}4$ block. Finally, the two modes determined in the two-path decision process are compared to decide the final block mode. Experimental results show that the computation time of the proposed method is decreased to about 77% of the exhaustive mode decision method with negligible quality loss.

TCSC control for Damping enhancement of intra-area Power Oscillation between Yeongdong and West sea power generation sites (영동권~서해안 발전단지간 연계선로의 전력진동 제동력 향상을 위한 TCSC 적용방안)

  • Hur, Yeon;Choi, Jin-San
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.224-225
    • /
    • 2011
  • 전력진동(Power Oscillation)은 전력이 0.05 Hz ~ 3.0 Hz의 저주파로 진동하는 현상으로서 계통고장 등의 원인으로 의해 취약한 송전선로에서 발생된다. 전력진동의 종류에는 inter-area mode, intra-area mode, local mode 등이 있는데, 국내 전력계통에서는 향후 영동권 원자력단지와 충남 서해안 화력단지 간을 연결하는 초고압 송전선로에서 intra-area mode의 전력진동이 발생할 가능성이 있다. TCSC를 적용하여 전력진동 제동효과를 얻을 수 있다. 본 논문에서 국내 전력계통에 TCSC를 설치함으로써 전력진동이 효과적으로 감소됨을 보인다. simulation 결과, 전력진동이 5% 수준으로 대폭 감소됨을 알 수 있다.

  • PDF

Fast and Efficient Macroblock Mode Decision Algorithm in H.264/AVC (H.264/AVC 고속의 효율적인 매크로블록 모드 결정 알고리즘)

  • Park, Seong-Bin;Kim, Yong-Kwan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.3
    • /
    • pp.42-49
    • /
    • 2011
  • In this paper, we propose a fast macroblock mode decision algorithm in H.264/AVC, based on the image sequence statistics. Specically, considering the directional characteristics of image sequences, we eliminate sub$8{\times}4$ or sub$4{\times}8$ mode decision process based on the rate-distortion cost of Inter$16{\times}8$ or Inter$8{\times}16$ mode respectively. Additionally, exploiting the optimal modes of submacroblock in inter$8{\times}8$ mode, we propose an algorithm to eliminate Intra$4{\times}4$ or Intra$16{\times}16$ mode decision process selectively. From the simulation results, the proposed method reduce the encoding time by maximum 70% of total, compared with the other conventional methods.

New Intra Coding Scheme for Improving Video Coding Efficiency (영상 부호화 효율을 위한 새로운 화면 내 부호화 방법)

  • Kim, Ji-Eon;Noh, Dae-Young;Jeong, Se-Yoon;Lee, Jin-Ho;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.16 no.3
    • /
    • pp.448-461
    • /
    • 2011
  • H.264/AVC significantly outperforms the previous video coding standards with many new coding tools. Among these tools, several intra-block coding tools can particularly improve coding efficiency. For intra prediction, H.264/AVC supports most probable mode in the entropy coding process to reduce syntax elements indicating intra prediction modes and most probable mode selection ratio is very high. Also, in general, natural images and videos have many homogeneous regions whose high correlation with neighbouring blocks. In this paper, we propose intra prediction mode SKIP mode using decoder-side prediction to improve the coding efficiency. The proposed method is determined the optimal prediction mode using only neighbouring block's information and coded on the basis of the conventional prediction/transform coding. And the prediction modes are not send to decoder at all. Skipped intra prediction mode is determined by decoder. Experimental results show that the proposed method achieves coding gains of 1.40% for common intermediate format(CIF), 3.24% for 720p sequences against the H.264/AVC JM 17.0 reference software.

Fast Intra-Mode Decision for H.264/AVC using Inverse Tree-Structure (H.264/AVC 표준에서 역트리 구조를 이용하여 고속으로 화면내 모드를 결정하는 방법)

  • Ko, Hyun-Suk;Yoo, Ki-Won;Seo, Jung-Dong;Sohn, Kwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.13 no.3
    • /
    • pp.310-318
    • /
    • 2008
  • The H.264/AVC standard achieves higher coding efficiency than previous video coding standards with the rate-distortion optimization (RDO) technique which selects the best coding mode and reference frame for each macroblock. As a result, the complexity of the encoder have been significantly increased. In this paper, a fast intra-mode decision algorithm is proposed to reduce the computational load of intra-mode search, which is based on the inverse tree-structure edge prediction algorithm. First, we obtained the dominant edge for each $4{\times}4$ block from local edge information, then the RDO process is only performed by the mode which corresponds to dominant edge direction. Then, for the $8{\times}8$ (or $16{\times}16$) block stage, the dominant edge is calculated from its four $4{\times}4$ (or $16{\times}16$) blocks' dominant edges without additional calculation and the RDO process is also performed by the mode which is related to dominant edge direction. Experimental results show that proposed scheme can significantly improve the speed of the intra prediction with a negligible loss in the peak signal to noise ratio (PSNR) and a little increase of bits.