• Title/Summary/Keyword: intestinal pathogens

Search Result 75, Processing Time 0.033 seconds

Enterotoxigenic Bacteroides fragilis-Associated Diseases and Detection (Enterotoxigenic Bacteroides fragilis에 의한 질환과 검출)

  • Gwon, Sun-Yeong;Jang, In-Ho;Rhee, Ki-Jong
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.4
    • /
    • pp.161-167
    • /
    • 2015
  • These commensal intestinal bacteria can enhance the immune system and aid in nutrient absorption but can also act as opportunistic pathogens. Among these intestinal bacteria, the anaerobic Bacteroides fragilis are divided into enterotoxigenic B. fragilis (ETBF) which secrete the B. fragilis toxin (BFT) and non-enterotoxigenic B. fragilis (NTBF) which do not secrete BFT. ETBF can cause diarrhea and colitis in both humans and livestock but can also be found in asymptomatic individuals. ETBF is predominantly found in patients with inflammatory diarrheal diseases and traveller's diarrhea. Several clinical studies have also reported an increased prevalence of ETBF in human patients with inflammatory bowel disease (IBD), colitis and colorectal cancer. In small animal models (C57BL/6 wild-type mice, germ-free mice, multiple intestinal neoplasia (Min) mice, rabbits and Mongolian gerbils), ETBF have been found to initiate and/or aggravate IBD, colitis and colorectal cancer. BFT induces E-cadherin cleavage in intestinal epithelial cells resulting in loss of epithelial cell integrity. Subsequent activation of the ${\beta}$-catenin pathway leads to increased cellular proliferation. In addition, ETBF causes acute and chronic colitis in wild-type mice as well as enhances tumorigenesis in Min mice via activation of the Stat3/Th17 pathway. Currently, ETBF can be detected using a BFT toxin bioassay and by PCR. Advances in molecular biological techniques such as real-time PCR have allowed both researchers as well as clinicians to rapidly detect ETBF in clinical samples. The emergence of more sensitive techniques will likely advance molecular insight into the role of ETBF in colitis and cancer.

Identification and Physiological Characters of Intestinal Bacteria of the Black Soldier Fly, Hermetia illucens (아메리카동애등에 장내세균 동정과 생리적 특징)

  • Kim, Eunsung;Park, Jiyeong;Lee, Sanghoon;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.53 no.1
    • /
    • pp.15-26
    • /
    • 2014
  • The black soldier fly, Hermetia illucens, larvae may depend on indigenous bacteria in the intestine to feed and digest diverse food sources. To prove this hypothesis, we isolated and identified the intestinal bacteria of the black soldier fly for their digestive and antimicrobial abilities. The last instar larvae had long digestive tracts, which were about seven times longer than its body length. An individual of H. illucens larvae possessed a total of $5.0{\pm}10^6$ bacteria in the whole intestine, of which more than 98% bacteria were located in the hindgut. Three different bacterial isolates cultured on nutrient agar (NA) medium were detected in the intestine and identified as Morganella morganii, Providencia rettgeri and Bacillus halodurans by Biolog microbial identification system. Analysis of 16S rDNA sequences of the intestinal bacteria detected the additional bacteria of Proteus mirabilis, Providencia alcalifaciens, and Providencia sp. These intestinal bacteria cultured on NA medium exhibited high resistance to 4 antibiotics and inhibited growth of other microbes which are mainly plant pathogens. Also, these bacteria exhibited catalytic activities to degrade cellulose, lipid, proteins, and carbohydrates. These results suggest that H. illucens larvae possess intestinal bacteria that may play crucial roles in their digestive physiology.

Research for Intestinal Mucosal Immunity Induced by Salmonella enteritidis Infection (Salmonella enteritidis 감염에 의해 장내 점막에서 유도되는 면역반응에 관한 연구)

  • Lee, Kang-Hee;Lee, Se-Hui;Yang, Jin-Young
    • Journal of Life Science
    • /
    • v.32 no.1
    • /
    • pp.36-43
    • /
    • 2022
  • Mucosal immunity is a well-designed defense system that builds precise and dynamic relationships against pathogens, and the gastrointestinal tract is the most important organ with this system, acting as a guardian at the forefront of its activity. Salmonella spp. cause food poisoning, entering the body orally and mainly invading the Peyer's patches of the small intestine. Although Salmonella strains share similar mechanisms for inducing innate immunity, different serotypes may have different effects on the intestinal mucosa due to host specificities and pathogenicity. In this study, we evaluated the effects of Salmonella enteritidis infections in mouse intestine and observed significantly reduced dose-dependent survival rates in a challenge test. Flow cytometry data showed no significant differences in intestinal immune cell populations, although histology indicated increased mucin production and decreased goblet cell counts in the Salmonella-treated groups. Furthermore, Claudin expression was significantly decreased in the samples with Salmonella. To investigate the relationship between S. enteritidis infection and inflammatory response, dextran sodium sulfate (DSS) was administered after infection and the results indicate lower survival rate after DSS treatment. In conclusion, we were able to identify the optimal concentration of S. enteritidis to modulate the intestinal mucosal immunity of mice and inflammatory response.

Evaluation of the membrane filtration and elution for detection of Giardia lamblia cysts in water (수중 Giardia lamblia cysts 검출을 위한 멤브레인 여과 및 용출에 대한 연구)

  • Hong, Uk-Seon;Kim, Gyeong-Ju;Lee, Gi-Se
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.422-423
    • /
    • 2000
  • The protozoan parasite Giardia lamblia has been implicated as the causative agents of many outbreaks of waterborne intestinal illness. Accurate evaluation of Giardia lamblia removal in water treatment process requires a reliable method for measuring the concentrations of these pathogens in water. The relative recovery of Giardia cysts was assessed for seeded samples of distilled water. Cysts preparation was done by encystment in vitro. Membrane filtration was evaulated with cellulose acetate, polycarbonate, polypropylene, polyethersulfone, nylon membranes. Elution conditions were varied to improve cyst recovery.

  • PDF

The dual probiotic and antibiotic nature of Bdellovibrio bacteriovorus

  • Dwidar, Mohammed;Monnappa, Ajay Kalanjana;Mitchell, Robert J.
    • BMB Reports
    • /
    • v.45 no.2
    • /
    • pp.71-78
    • /
    • 2012
  • Bdellovibrio bacteriovorus is a predatory bacterium which attacks and consumes other bacterial strains, including the well known pathogens E. coli O157 : H7, Salmonella typhimurium and Helicobacter pylori. This remarkable activity has been the focus of research for nearly five decades, with exciting practical applications to medical, agriculture and farming practices recently being published. This article reviews many of the exciting steps research into this bacterium, and similar bacteria, has taken, focusing primarily on their use as both an antibiotic to remove harmful and pathogenic bacteria and as a probiotic to help curb and control the bacterial populations within the intestinal tract. Owing to the unique and dual nature of this bacterium, this review proposes the use of "amphibiotic" to describe these bacteria and their activities.

A Preliminary Analysis of Secreted Proteins from Bifidobacterium pseudocatanulatum BP1 by Two-Dimensional Gel Electrophoresis

  • Moon, Gi-Seong
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.4
    • /
    • pp.366-369
    • /
    • 2008
  • Proteins secreted from bifidobacteria are believed to play important roles in human intestines via interacting with different host cells. In this respect, proteins secreted from Bifidobacterium pseudocatanulatum BP1, which has been rarely studied, were analyzed by two-dimensional gel electrophoresis (2DE). Using this approach, approx-imately 21 protein spots on a 2DE gel were detected and 10 of these spots were identified by mass spectrometry. Five spots were identified as hypothetical proteins and the remaining 5 spots were identified as a putative iron-side-rophore binding lipoprotein, a short-chain dehydrogenase/reductase SDR, an exonuclease, cytochrome P450 hydroxylase, and a putative dehydrogenase. The identification of secreted putative iron-siderophore binding lipoprotein was highly interesting since it is an important protein that is involved in ferric iron uptake in pathogenic bacteria. This finding could accelerate studies on the probiotic effect of Bifidobacterium by explaining the competition between bifidobacteria and intestinal pathogens for ferric iron.

Study on the Identification Methods of the Non-agglutinating Vibrio (NAG Vibrio의 검사에 관한 소고)

  • Lee M. W.
    • Journal of environmental and Sanitary engineering
    • /
    • v.2 no.2 s.2
    • /
    • pp.61-67
    • /
    • 1987
  • The genus Vibrio contains some of the most important intestinal pathogens of humans, including Vibrio cholerae, the cause of epidemic Asiatic cholera. A group of organisms which have been reffered to as the non-agglutinating vibrio (NAG) do not agglutinate in the Vibrio cholerae 0 group 1 antisera, but are indistinguishable from the 0-1 group both chemically and genetically. Non-O-l Vibrio cholerae can cause isolated as well as focal outbreaks of diarrhea, but the volume of fluid loss does not approach that of classic cholera, and the disease is usually self-limiting. These free-living organisms are found world-widely distributed in the environment including sewage, contaminated water, estuaries, seafood and animals. These strains involved in several cases were isolated from the environment and some patients of diarrhea, and a few epidemiologic reports indicated the wide distribution of the strains throughout the country, giving an attention to the role the organisms may play in an outbreak of diarrhea in Korea. More research on the epidemiology, serologic typing and virulence of the group of organisms, should be, therefore, done to obtain a complete understanding of their role in human disease.

  • PDF

Prevalence of enteropathogens in the feces from diarrheic Korean native cattle in Gwangju area, Korea (광주지역 한우 분변 내 설사병 병원체 조사)

  • Koh, Ba-Ra-Da;Kim, Hyo-Jung;Oh, A-Reum;Jung, Bo-Ram;Park, Jae-Sung;Lee, Jae-Gi;Na, Ho-Myoung;Kim, Yong-Hwan
    • Korean Journal of Veterinary Service
    • /
    • v.42 no.2
    • /
    • pp.93-112
    • /
    • 2019
  • Calf diarrhea is a common disease in young claves and is still a major cause of productivity and economic loss in livestock farms. Fecal samples from Korean native cattle (n=100) with diarrhea from 64 farms in Gwangju area, Korea from september 2017 to December 2018 were examined for shedding of important protozoan parasitic, viral and bacterial pathogens using culture, rapid test kit and PCR methods. Of 57 (89.1%) of the 64 Korean native cattle farms examined had samples infected with at least one of the investigated pathogens. Among 100 fecal samples, 88 samples were positive for at least one the twelve pathogens and 51 samples were simultaneously positive for two or more pathogens by culture and PCR assay. Bovine group A rotavirus (BRV) was the most common pathogen, found in 43/100 (43.0%) samples on 32/64 (50.0%) farms. Subsequently, kobuvirus (30.0%), pathogenic E. coli (29.0%), bovine parvovirus (17.0%), Giardia spp. (13.0%), Eimeria spp. (10.0%), Clostridium perfringens type A (8.0%), bovine torovirus (8.0%), bovine viral diarrhea virus (6.0%), bovine coronavirus (5.0%), bovine norovirus (2.0%) and Cryptosporidium spp. (2.0%) were detected. Nebovirus, kırklareli virus, bovine adenovirus, Salmonella spp. and intestinal parasites were not detected. Of the 72 calves sampled in this age group, 64 (88.9%) samples were positive for at least one enteropathogen. BRV was identified in 34/72 (47.2%) samples from 27/48 (56.3%) farms. Subsequently, pathogenic E. coli (30.6%), kobuvirus (29.2%), BPaV (22.2%), Giardia spp. (15.3%), Eimeria spp. (9.7%), BVDV (6.9%), Cl. perfringens type A (6.9%), BCoV (4.6%) and Cryptosporidium spp. (2.8%) were detected in fecal samples. A total of ninety-six strains of E. coli were isolated from one hundred fecal samples collected from Korean native cattle with diarrhea. The presence of stx1, stx2, eaeA, LT, STa, STb, ehxA, saa, F4, F5(K99), F6, F17, F18 and F41 genes in the isolates was investigated by PCR. Out of ninety-six E. coli isolates screened for specific genes, 30 strains E. coli were identified to harbor shiga toxin-producing E. coli (STEC) 7 (7.3%), enterohemorrhagic E. coli (EHEC) 8 (8.3%), enteropathogenic E. coli (EPEC) 6 (6.3%), enterotoxigenic E. coli (ETEC) 2 (2.1%) and STEC/ETEC hybrid 7 (7.3%). This study provides epidemiological estimates of the prevalence of Korean native cattle's enteropathogens in Gwangju area, Korea, which would be used for cattle farmers and veterinarians to select appropriate therapeutic method.

Synthesis of β-Galactooligosaccharide Using Bifidobacterial β-Galactosidase Purified from Recombinant Escherichia coli

  • Oh, So Young;Youn, So Youn;Park, Myung Soo;Kim, Hyoung-Geun;Baek, Nam-In;Li, Zhipeng;Ji, Geun Eog
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.8
    • /
    • pp.1392-1400
    • /
    • 2017
  • Galactooligosaccharides (GOSs) are known to be selectively utilized by Bifidobacterium, which can bring about healthy changes of the composition of intestinal microflora. In this study, ${\beta}-GOS$ were synthesized using bifidobacterial ${\beta}-galactosidase$ (G1) purified from recombinant E. coli with a high GOS yield and with high productivity and enhanced bifidogenic activity. The purified recombinant G1 showed maximum production of ${\beta}-GOSs$ at pH 8.5 and $45^{\circ}C$. A matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis of the major peaks of the produced ${\beta}-GOSs$ showed MW of 527 and 689, indicating the synthesis of ${\beta}-GOSs$ at degrees of polymerization (DP) of 3 and DP4, respectively. The trisaccharides were identified as ${\beta}-{\text\tiny{D}}$-galactopyranosyl-($1{\rightarrow}4$)-O-${\beta}-{\text\tiny{D}}$-galactopyranosyl-($1{\rightarrow}4$)-O-${\beta}-{\text\tiny{D}}$-glucopyranose, and the tetrasaccharides were identified as ${\beta}-{\text\tiny{D}}$-galactopyranosyl-($1{\rightarrow}4$)-O-${\beta}-{\text\tiny{D}}$-galactopyranosyl-($1{\rightarrow}4$)-O-${\beta}-{\text\tiny{D}}$-galactopyranosyl-($1{\rightarrow}4$)-O-${\beta}-{\text\tiny{D}}$-glucopyranose. The maximal production yield of GOSs was as high as 25.3% (w/v) using purified recombinant ${\beta}-galactosidase$ and 36% (w/v) of lactose as a substrate at pH 8.5 and $45^{\circ}C$. After 140 min of the reaction under this condition, 268.3 g/l of GOSs was obtained. With regard to the prebiotic effect, all of the tested Bifidobacterium except for B. breve grew well in BHI medium containing ${\beta}-GOS$ as a sole carbon source, whereas lactobacilli and Streptococcus thermophilus scarcely grew in the same medium. Only Bacteroides fragilis, Clostridium ramosum, and Enterobacter cloacae among the 17 pathogens tested grew in BHI medium containing ${\beta}-GOS$ as a sole carbon source; the remaining pathogens did not grow in the same medium. Consequently, the ${\beta}-GOS$ are expected to contribute to the beneficial change of intestinal microbial flora.

Infection and Immune Response in the Nematode Caenorhabditis elegans Elicited by the Phytopathogen Xanthomonas

  • Bai, Yanli;Zhi, Dejuan;Li, Chanhe;Liu, Dongling;Zhang, Juan;Tian, Jing;Wang, Xin;Ren, Hui;Li, Hongyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.9
    • /
    • pp.1269-1279
    • /
    • 2014
  • Xanthomonas oryzae pv. oryzae (Xoo) strains are plant pathogenic bacteria that can cause serious blight of rice, and their virulence towards plant host is complex, making it difficult to be elucidated. Caenorhabditis elegans has been used as a powerful model organism to simplify the host and pathogen system. However, whether the C. elegans is feasible for studying plant pathogens such as Xoo has not been explored. In the present work, we report that Xoo strains PXO99 and JXOIII reduce the lifespan of worms not through acute toxicity, but in an infectious manner; pathogens proliferate and persist in the intestinal lumen to cause marked anterior intestine distension. In addition, Xoo triggers (i) the p38 MAPK signal pathway to upregulate its downstream C17H12.8 expression, and (ii) the DAF-2/DAF-16 pathway to upregulate its downstream gene expressions of mtl-1 and sod-3 under the condition of daf-2 mutation. Our findings suggest that C. elegans can be used as a model to evaluate the virulence of Xoo phytopathogens to host.