DOI QR코드

DOI QR Code

Identification and Physiological Characters of Intestinal Bacteria of the Black Soldier Fly, Hermetia illucens

아메리카동애등에 장내세균 동정과 생리적 특징

  • Kim, Eunsung (Department of Bioresource Sciences, Andong National University) ;
  • Park, Jiyeong (Department of Bioresource Sciences, Andong National University) ;
  • Lee, Sanghoon (GreenTeko, Inc.) ;
  • Kim, Yonggyun (Department of Bioresource Sciences, Andong National University)
  • 김은성 (안동대학교 자연과학대학 생명자원과학과) ;
  • 박지영 (안동대학교 자연과학대학 생명자원과학과) ;
  • 이상훈 ((주)그린테코) ;
  • 김용균 (안동대학교 자연과학대학 생명자원과학과)
  • Received : 2013.07.17
  • Accepted : 2013.10.04
  • Published : 2014.03.01

Abstract

The black soldier fly, Hermetia illucens, larvae may depend on indigenous bacteria in the intestine to feed and digest diverse food sources. To prove this hypothesis, we isolated and identified the intestinal bacteria of the black soldier fly for their digestive and antimicrobial abilities. The last instar larvae had long digestive tracts, which were about seven times longer than its body length. An individual of H. illucens larvae possessed a total of $5.0{\pm}10^6$ bacteria in the whole intestine, of which more than 98% bacteria were located in the hindgut. Three different bacterial isolates cultured on nutrient agar (NA) medium were detected in the intestine and identified as Morganella morganii, Providencia rettgeri and Bacillus halodurans by Biolog microbial identification system. Analysis of 16S rDNA sequences of the intestinal bacteria detected the additional bacteria of Proteus mirabilis, Providencia alcalifaciens, and Providencia sp. These intestinal bacteria cultured on NA medium exhibited high resistance to 4 antibiotics and inhibited growth of other microbes which are mainly plant pathogens. Also, these bacteria exhibited catalytic activities to degrade cellulose, lipid, proteins, and carbohydrates. These results suggest that H. illucens larvae possess intestinal bacteria that may play crucial roles in their digestive physiology.

다양한 먹이 조건에서 생활하는 아메리카동애등에(Hermetia illucens)는 장내 세균의 의존성을 가질 수 있다. 이 가설을 증명하기 위해 본 연구는 종령 유충의 소화관에 존재하는 세균을 분리, 동정하고 효소활성 및 항균 능력을 분석하였다. 종령 유충의 소화관은 몸 체장에 약 7 배의 길이를 나타냈다. 한 개체의 소화관 내 존재하는 세균 수는 $5.0{\times}10^6$ cfu로 98% 이상이 후장에 존재했다. 소화관에는 3 종류의 상이한 세균이 존재했고, 미생물 동정 장치는 이들이 각각 Morganella morganii, Providencia rettgeri 및 Bacillus halodurans로 동정하였다. 이들 소화관 세균을 16S rDNA 서열을 분석한 결과 이 외에 Proteus mirabilis, Providencia alcalifaciens, Providencia sp.를 검출하였다. 이들 장내세균은 항생제 내성을 보였고, 타 미생물의 성장을 억제하였다. 또한 섬유소, 지질, 단백질 및 탄수화물의 분해 능력을 보유하였다. 본 연구 결과들은 아메리카동애등에 소화관에 유용성이 높은 세균을 보유하고 있다고 제시하였다.

Keywords

References

  1. Basset, A., Tzou, P., Lemaitre, B., Boccard, F., 2003. A single gene that promotes interaction of a phytopathogenic bacterium with its insect vector, Drosophila melanogaster. EMBO Rep. 4, 205-209. https://doi.org/10.1038/sj.embor.embor730
  2. Bensen, H.J., 1990. Microbiological applications. 5th ed., 376 pp. Wm. C. Brown Publishers, IA. USA.
  3. Berg, R.D., 1996. The indigenous gastrointestinal microflora. Trends Microbiol. 4, 430-435. https://doi.org/10.1016/0966-842X(96)10057-3
  4. Bischoff, V., Vignal, C., Duvic, B., Boneca, I.G., Hoffmann, J.A., Royet, J., 2006. Downregulation of the Drosophila immune response by peptidoglycan-recognition proteins SC1 and SC2. PLoS Pathog. 2, e14. https://doi.org/10.1371/journal.ppat.0020014
  5. Breznak, J.A., 2000. Ecology of prokaryotic microbes in the guts of wood- and litter-feeding termites. Oecologia 110, 209-231.
  6. Choi. W.H., Yun, J.H., Chu, J.P., Chu, K.B., 2012. Antibacterial effect of extracts of Hermetia illucens (Diptera: Stratiomyidae) larvae against Gram-negative bacteria. Entomol. Res. 42, 219-226. https://doi.org/10.1111/j.1748-5967.2012.00465.x
  7. Clark, T.M., 1999. Evolution and adaptive significance of larval midgut alkalinization in the insect superorder Mecopterida. J. Chem. Ecol. 25, 1945-1960. https://doi.org/10.1023/A:1020946203089
  8. Diener, S., Zurbrugg, C., Tockner, K., 2009. Conversion of organic material by black soldier fly larvae: establishing optimal feeding rates. Waste Manag. Res. 27, 603-610. https://doi.org/10.1177/0734242X09103838
  9. Dillon, R.J., Charnley, A.K., 1988. Inhibition of Metarhizium anisopliae by the gut bacteria flora of the desert locust-characterization of antifungal toxins. Can. J. Microbiol. 34, 1075-1082. https://doi.org/10.1139/m88-189
  10. Dillon, R.J., Dillon, V.M., 2004. The gut bacteria of insects: nonpathogenic interactions. Annu. Rev. Entomol. 49, 71-92. https://doi.org/10.1146/annurev.ento.49.061802.123416
  11. Douglas, A.E., 1998. Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu. Rev. Entomol. 43, 17-37. https://doi.org/10.1146/annurev.ento.43.1.17
  12. Erdmann, G.R., 1987. Antibacterial action of myiasis-causing flies. Parasitol. Today 3, 214-216. https://doi.org/10.1016/0169-4758(87)90062-7
  13. Erickson, M.C., Islam, M., Sheppard, C., Liao, J., Doyle, M.P., 2004. Reduction of Escherichia coli 0157:H7 and Salmonella enterica serovar enteritidis in chicken manure by larvae of the black soldier fly. J. Food Protect. 67, 685-690.
  14. Ha, E.M., Oh, C.T., Bae, Y.S., Lee, W.J., 2005a. A direct role for dual oxidase in Drosophila gut immunity. Science 310, 847-850. https://doi.org/10.1126/science.1117311
  15. Ha, E.M., Oh, C.T., Ryu, J.H., Bae, Y.S., Kang, S.W., Jang, I.H., Brey, P.T., Lee, W.J., 2005b. An antioxidant system required for host protection against gut infection in Drosophila. Dev. Cell 8, 125-132. https://doi.org/10.1016/j.devcel.2004.11.007
  16. Jeon, H., Park, S., Choi, J., Jeong, G., Lee, S.B., Choi, Y., Lee, S.J., 2011. The intestinal bacterial community in the food waste-reducing larvae of Hermetia illucens. Curr. Microbiol. 62, 1390-1399. https://doi.org/10.1007/s00284-011-9874-8
  17. Ji, D., Kim, Y., 2004. An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits the expression of an antibacterial peptide, cecropin, of the beet armyworm, Spodoptera exigua. J. Insect Physiol. 50, 489-496. https://doi.org/10.1016/j.jinsphys.2004.03.005
  18. Ji, D., Yi, Y., Kang, G.H., Choi, Y.H., Kim, P., Baek, N.I., Kim, Y., 2004. Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-patho genic bacteria. FEMS Microbiol. Lett. 239, 241-248. https://doi.org/10.1016/j.femsle.2004.08.041
  19. Kim, W., Bae, S., Kim, A., Park, K., Lee, S., Choi, Y., Han, S., Park, Y., Koh, Y., 2011a. Characterization of the molecular features and expression patterns of two serine proteases in Hermetia illucens (Diptera: Stratiomyidae) larvae. BMB reports 44, 387-392. https://doi.org/10.5483/BMBRep.2011.44.6.387
  20. Kim, W., Bae, S., Park, K., Lee, S., Choi, Y., Han, S., Koh, Y., 2011b. Biochemical characterization of digestive enzymes in the black solder fly, Hermetia illucens (Diptera: Stratiomyidae). J. Asia Pac. Entomol. 14, 11-14. https://doi.org/10.1016/j.aspen.2010.11.003
  21. Landi, S., 1960. Bacteriostatic effect of hemolymph of larvae of various botflies. Can. J. Microbiol. 6, 115-119. https://doi.org/10.1139/m60-013
  22. Lee, Y.Y., Lee, J.K., Park, K.H., Kim, S.Y., Roh, S.W., Lee, S.B., Choi, Y., Lee, S.J., 2013. Paenalcaligenes hermetiae sp. nov., isolated from the larval gut of Hermetia illucens (Diptera:Stratiomyidae). Int. J. Syst. Evol. Microbiol. In press.
  23. Lhocine, N., Ribeiro, P.S., Buchon, N., Wepf, A., Wilson, R., 2008. PIMS modulates immune tolerance by negatively regulating Drosophila innate immune signaling. Cell Host Microbe 4, 147-158. https://doi.org/10.1016/j.chom.2008.07.004
  24. Natori, S., 1995. Antimicrobial proteins of insects and their clinical application. Nippon Rinsho. 5, 1297-1304.
  25. Newton, G.L., Booram, C.V., Barker, R.W., Hale, O.M., 1997. Dried Hermetia illucens larvae meal as a supplement for swine. J. Anim. Sci. 44, 395-400.
  26. Park, J., Lee, S., Lee, H., Kim, Y., 2013. Effect of stress sound on the development of the black soldier fly, Hermetia illucens. Korean J. Appl. Entomol. In Press. https://doi.org/10.5656/KSAE.2013.06.0.025
  27. Park, J.W., Lee, B.L., 2012. Insect immunology, in: Gilbert, L.I. (Ed.), Insect molecular biology and biochemistry. Academic Press, New York, pp. 480-512.
  28. Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59-65. https://doi.org/10.1038/nature08821
  29. Roh, S.W., Nam, Y.D., Chang, H.W., Kim, K.H., Kim, M.S., Ryu, J.H., Kim, S.H., Lee, W.J., Bae, J.W., 2008. Phylogenetic characterization of two novel commensal bacteria involved with innate immune homeostasis in Drosophila melanogaster. Appl. Environ. Microbiol. 74, 6171-6177. https://doi.org/10.1128/AEM.00301-08
  30. Ryu, J.H., Kim, S.H., Lee, H.Y., Bai, J.Y., Nam, Y.D., Bae, J.W., Lee, D.G., Shin, S.C., Ha, E.M., Lee, W.J., 2008. Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science 319, 777-782. https://doi.org/10.1126/science.1149357
  31. Sambrook, J., Fritsch, E.F., Maniatis, T., 1989. Molecular cloning. A laboratory manual. 2nd ed. Cold Spring Harbour Press, NY.
  32. Sheppard, D.C., Tomberlin, J.K., Joyce, J.A., Kiser, B.C., Sumner, S.M., 2002. Rearing methods for the black soldier fly (Diptera: Stratiomyidae). J. Med. Entomol. 39, 695-698. https://doi.org/10.1603/0022-2585-39.4.695
  33. Sherman, R.A., Hall, M.J.R., Thomas, S., 2000. Medical maggots: an ancient remedy for some contemporary afflictions. Annu. Rev. Entomol. 45, 55-81. https://doi.org/10.1146/annurev.ento.45.1.55
  34. Takatsuka, J., Kunimi, Y., 2000. Intestinal bacterial affect growth of Bacillus thuringiensis in larvae of the oriental tea tortrix, Homona magnanima Diakonoff (Lepidoptera: Tortricidae). J. Invertebr. Pathol. 76, 222-226. https://doi.org/10.1006/jipa.2000.4973
  35. Watanabe, K., Hara, W., Sato, M., 1998. Evidence for growth of strains of the plant epiphytic bacterium Erwinia herbicola and transconjugation among the bacterial strains in guts of the silkworm Bombyx mori. J. Invertebr. Pathol. 72, 104-111. https://doi.org/10.1006/jipa.1998.4764
  36. Watanabe, K., Sato, M., 1998. Plasmid-mediated gene transfer between insect-resident bacteria, Erwinia cloacae, and plant-epiphytic bacteria, Erwinia herbicola, in guts of silkworm larvae. Curr. Microbiol. 37, 352-355. https://doi.org/10.1007/s002849900391
  37. Yeom, I.H., Jeon, Y.H., Kim, Y., 2012. Molecular diagnosis of plant disease and insect pests. GCO Science Publishing, Seoul, Korea.
  38. Yu, H., Wang, Z., Liu, L., Xia, Y., Cao, Y., Yin, Y., 2008. Analysis of the intestinal microflora in Hepialus gonggaensis larvae using 16S rRNA sequences. Curr. Microbiol. 56, 391-396. https://doi.org/10.1007/s00284-007-9078-4
  39. Zaidman-Remy, A., Herve, M., Poidevin, M., Pili-Floury, S., Kim, M.S., Blanot, D., Oh, B.H., Ueda, R., Mengin-Lecreulx, D., Lemaitre, B., 2006. The Drosophila amidase PGRPLB modulates the immune response to bacterial infection. Immunity 24, 463-473. https://doi.org/10.1016/j.immuni.2006.02.012
  40. Zheng, L., Crippen, T.L., Singh, B., Tarone, A.M., Dowd, S., Yu, Z., Wood, T.K., Tomberlin, J.K., 2013. A survey of bacterial diversity from successive life stages of black solder fly (Diptera:Stratiomyidae) by using 16S rDNA pyrosequencing. J. Med. Entomol. 50, 647-658. https://doi.org/10.1603/ME12199

Cited by

  1. ) larvae pp.00225142, 2018, https://doi.org/10.1002/jsfa.9127
  2. External Morphology and Habitat of Black Soldier Fly (Hermetia illucens L.) in Korea vol.36, pp.4, 2018, https://doi.org/10.11626/KJEB.2018.36.4.584