• 제목/요약/키워드: intestinal pathogen

Search Result 58, Processing Time 0.028 seconds

Nutritional Modulation of Resistance and Resilience to Gastrointestinal Nematode Infection - A Review

  • Walkden-Brown, Stephen W.;Kahn, Lewis P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.6
    • /
    • pp.912-924
    • /
    • 2002
  • Disease susceptibility is linked to nutritional status for a wide range of human and animal diseases. Nutritional status can influence both resistance (ability to resist the pathogen) and resilience (ability to tolerate or ameliorate the effects of the pathogen). This review focuses on the nutritional modulation of gastro-intestinal nematode infection in domestic ruminants, primarily sheep. It highlights the duality of the adverse consequences of infection on host nutritional status and the adverse consequences of poor host nutritional status on resistance to infection. Central to both phenomena is the complex, gut-based immune response to gastrointestinal nematode infection. The potential for strategic nutritional supplementation to enhance host resistance and resilience is reviewed together with recent findings on responses to increased ME supply, and long term effects on host immunity of short term protein supplementation.

Dietary Regulations of the Intestinal Barrier Function at Weaning

  • Bosi, Paolo;Gremokolini, Cyrien;Trevisi, Paolo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.4
    • /
    • pp.596-608
    • /
    • 2003
  • Weaning is a complex phase when the mammal suffers the action of different stressors that contribute to negatively affect the efficiency of the intestinal mucosa and of the whole local integrated system, that acts as barrier against any nocuous agent. The components of this barrier are mechanical, chemical, and bacteriological; immunological and not. The development of contact with a saprophyte microflora and the maintenance of feed intake after the interruption of motherly nutrition are essential for the maturation of an equilibrated local immune function and for a functional integrity of villi. Opportunities and limits of some dietary strategies that can contribute to reduce negative effects of weaning on health and performance are discussed. Knowledges on the possible mechanism of action of probiotics are upgraded, particularly for their supposed role in the balance between different immune functions (effectory/regulatory). Some tools to control pathogen microflora are reviewed (acids, herbs, immunoglobulin sources) and practical feeding systems are proposed.

Inhibitory Activity of Bacillus licheniformis AJ on the Growth of Diarrheal Pathogens (Bacillus licheniformis AJ 균주제제의 설사원인 미생물의 성장 억제효과)

  • 김지영;배은아;한명주;김동현
    • Biomolecules & Therapeutics
    • /
    • v.7 no.4
    • /
    • pp.385-389
    • /
    • 1999
  • The injibitory effect of Bacillus licheniformis AJ isolated from genitourinary normal flora as a new probiotics on the growth of diarrheal pathogens was studied. This B. licheniformis AJ inhibited the growth of E.coli O-157. Salmonella typhi and Shigella sonnei as well as the infectivity of rotavirus. However, it did not inhibit the growth of Helicobacter pyloriand human intestinal bacteria although it inhibited the harmful enzyme activity of human intestinal bacteria. B. licheniformis AJ seems to excret heat-lable growth-inhibitory protein, bacteriocin, into the media. These results suggest that B. lichenoformis AJ could be used as a new type of probiotics.

  • PDF

Metabolism of Ginseng Saponins by Human Intestinal Bacteria (Park II) (사람의 장내세균에 의한 인삼 사포닌의 대사(제2보))

  • Hasegawa, Hideo;Ha, Joo-Young;Park, Se-Ho;Matumiya, Satoshi;Uchiyama, Masamori;Huh, Jae-Doo;Sung, Jong-Hwan
    • Korean Journal of Pharmacognosy
    • /
    • v.28 no.1
    • /
    • pp.35-41
    • /
    • 1997
  • Following ginsenoside-Rb1-hydrolyzing assay, strictly anaerobic bacteria were isolated from human feces and identified as Prevotella oris. The bacteria hydrolyzed ginsenoside Rb1 and Rd to $20-O-{\beta}-D-glucopyranosyl-20(S)-protopanaxadiol$ (I), ginsenoside Rb2 to $20-O-[{\alpha}-L-arabinofuranosyl (1{\rightarrow}6)-{\beta}-D-glucopyranosyl] - 20(S)-protopanaxadiol$ (ll) and ginsenoside Rc to $20-O-[{\alpha}-L-arabinofuranosyl (1{\rightarrow} 6){\beta}-D-g1ucopyranosyl]-20(S)-protopanaxadiol$ (III) like fecal microflora, but did not attack ginsenoside Re nor Rgl (Protopanaxatriol-type). Pharmacokinetic studies of ginseng saponins was also performed using specific pathogen free rats and demonstrated that the intestinal bacterial metabolites I-111, 20(S)- protopanaxatriol(IV) and 20(S)-protopanaxadiol(V) were absorbed from the intestines to $blood(0.4-5.1\;{\mu}g/ml)$ after oral administration with total saponin(1 g/kg/day).

  • PDF

Distribution of Lawsonia intracellularis in livestock transport car of slaughterhouse, Korea (도축장 출하차량에서 Lawsonia intracellularis 분포율 조사)

  • Lee, Su-Ji;Lee, Hee-Seon;Seo, Ji-Soo;Kim, Tae-Gyeom;Jeong, Jae-Kyo
    • Korean Journal of Veterinary Service
    • /
    • v.41 no.4
    • /
    • pp.245-250
    • /
    • 2018
  • Lawsonia intracellularis is the pathogenic agent of porcine proliferative enteritis (PPE). The bacterial pathogen infects the intestinal crypt cells which causes hyperplasia of the infected cells and leads to the process of intestinal pathogenesis. PPE includes some clinical maninfestations, including acute hemorrhagic diarrhea with sudden death in growing pigs and porcine intestinal adenomatosis, to a chronic diarrhea with reduced productivity of the infected pigs. The purpose of the present studies were carried out to determine L. intracellularis in livestock transport car of slaughterhouse. Distribution of L. intracellularis in livestock transport car were conducted using real-time polymerase chain reaction (real-time PCR) testing method, total 300 samples. Of 300 samples, 119 (39.7%) were detected as positive to L. intracellularis in livestock transport car. In seasonal analysis, 42 (28.0%) out of 150 samples in spring and summer season. 77 (51.3%) out of 150 sample in autumn and winter season. In regional analysis, 53 (88.3%) out of 60 cars and the detection ratio showed that regional variation in livestock transport car.

In vivo Antagonistic Effect of Lactobacillus helveticus CU 631 against Salmonella enteritidis KU101 infection

  • Bae, Jin-Seong;Byun, Jung-Ryul;Yoon, Yung-Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.3
    • /
    • pp.430-434
    • /
    • 2003
  • In vivo antagonistic effect of Lactobacillus helveticus CU 631 and Lactobacillus spp. against typical enteritis causing pathogen Salmonella enteritidis KU 101 have been determined, which showed an increase in survival rate and the decline in viable cell numbers of pathogen in liver and spleen at sacrifice. A signifcant difference in the antagonistic effect against KU 101 were observed, which was species and/or strain dependent of Lactobacillus (p<0.01), the survival rate of the mice in the Salmonella infection by feeding L. helveticus CU 631 has been shown to be 157%, whereas those of L. rhamnosus GG ATCC 53103, L. acidophilus ATCC 4356, L. johnsonii C-4 were 137%, 132%, 119% respectively on the basis of lactobacilli non-associated control KU101 fed mice to be 100%. Viable cells of S. enteritidis KU101 in the liver and in the spleen at sacrifice were decreased in Lactobacillus spp. fed group with no significant difference. The higher level of total secretory IgA concentration in the intestinal fluid of lactobacilli fed mice than control mice have been observed. In vitro antagonistic activity of Lactobacillus spp. against KU101 have been determined, a prominent antagonistic activity of CU 631 against KU 101 were demonstrated.

Complete genome sequence of Pediococcus acidilactici CACC 537 isolated from canine

  • Jung-Ae Kim;Hyun-Jun Jang;Dae-Hyuk Kim;Youn Kyoung Son;Yangseon Kim
    • Journal of Animal Science and Technology
    • /
    • v.65 no.5
    • /
    • pp.1105-1109
    • /
    • 2023
  • Pedi coccus acidilactici CACC 537 was isolated from canine feces and reported to have probiotic properties. We aimed to characterize the potential probiotic properties of this strain by functional genomic analysis. Complete genome sequencing of P. acidilactici CACC 537 was performed using a PacBio RSII and Illumina platform, and contained one circular chromosome (2.0 Mb) with a 42% G + C content. The sequences were annotation revealed 1,897 protein-coding sequences, 15 rRNAs, and 56 tRNAs. It was determined that P. acidilactici CACC 537 genome carries genes known to be involved in the immune system, defense mechanisms, restriction-modification (R-M), and the CRISPR system. CACC 537 was shown to be beneficial in preventing pathogen infection during the fermentation process, help host immunity, and maintain intestinal health. These results provide for a comprehensive understanding of P. acidilactici and the development of industrial probiotic feed additives that can help improve host immunity and intestinal health.

Use of Postbiotic as Growth Promoter in Poultry Industry: A Review of Current Knowledge and Future Prospects

  • Muhammad Saeed;Zoya Afzal;Fatima Afzal;Rifat Ullah Khan;Shaaban S. Elnesr;Mahmoud Alagawany;Huayou Chen
    • Food Science of Animal Resources
    • /
    • v.43 no.6
    • /
    • pp.1111-1127
    • /
    • 2023
  • Health-promoting preparations of inanimate microorganisms or their components are postbiotics. Since probiotics are sensitive to heat and oxygen, postbiotics are stable during industrial processing and storage. Postbiotics boost poultry growth, feed efficiency, intestinal pathogen reduction, and health, making them acceptable drivers of sustainable poultry production. It contains many important biological properties, such as immunomodulatory, antioxidant, and anti-inflammatory responses. Postbiotics revealed promising antioxidant effects due to higher concentrations of uronic acid and due to some enzyme's production of antioxidants, e.g., superoxide dismutase, glutathione peroxidase, and nicotinamide adenine dinucleotide oxidases and peroxidases. Postbiotics improve intestinal villi, increase lactic acid production, and reduce Enterobacteriaceae and fecal pH, all of which lead to a better immune reaction and health of the gut, as well as better growth performance. P13K/AKT as a potential target pathway for postbiotics-improved intestinal barrier functions. Similarly, postbiotics reduce yolk and plasma cholesterol levels in layers and improve egg quality. It was revealed that favorable outcomes were obtained with various inclusion levels at 1 kg and 0.5 kg. According to several studies, postbiotic compounds significantly increased poultry performance. This review article presents the most recent research investigating the beneficial results of postbiotics in poultry.

Effects of functional nutrients on chicken intestinal epithelial cells induced with oxidative stress

  • Hyun Woo Kim;Seung Yun Lee;Sun Jin Hur;Dong Yong Kil;Jong Hyuk Kim
    • Journal of Animal Science and Technology
    • /
    • v.65 no.5
    • /
    • pp.1040-1052
    • /
    • 2023
  • The objective of this study was to investigate the protective effects of functional nutrients including various functional amino acids, vitamins, and minerals on chicken intestinal epithelial cells (cIECs) treated with oxidative stress. The cIECs were isolated from specific pathogen free eggs. Cells were exposed to 0 mM supplement (control), 20 mM threonine (Thr), 0.4 mM tryptophan (Trp), 1 mM glycine (Gly), 10 μM vitamin C (VC), 40 μM vitamin E (VE), 5 μM vitamin A (VA), 34 μM chromium (Cr), 0.42 μM selenium (Se), and 50 μM zinc (Zn) for 24 h with 6 replicates for each treatment. After 24 h, cells were further incubated with fresh culture medium (positive control, PC) or 1 mM H2O2 with different supplements (negative control, NC and each treatment). Oxidative stress was measured by cell proliferation, whereas tight junction barrier function was analyzed by fluorescein isothiocyanate (FITC)-dextran permeability and transepithelial electrical resistance (TEER). Results indicated that cell viability and TEER values were less (p < 0.05) in NC treatments with oxidative stress than in PC treatments. In addition, FITC-dextran values were greater (p < 0.05) in NC treatments with oxidative stress than in PC treatments. The supplementations of Thr, Trp, Gly, VC, and VE in cells treated with H2O2 showed greater (p < 0.05) cell viability than the supplementation of VA, Cr, Se, and Zn. The supplementations of Trp, Gly, VC, and Se in cells treated with H2O2 showed the least (p < 0.05) cellular permeability. In addition, the supplementation of Thr, VE, VA, Cr, and Zn in cells treated with H2O2 decreased (p < 0.05) cellular permeability. At 48 h, the supplementations of Thr, Trp, and Gly in cells treated with H2O2 showed the greatest (p < 0.05) TEER values among all treatments, and the supplementations of VC and VE in cells treated with H2O2 showed greater (p < 0.05) TEER values than the supplementations of VA, Cr, Se, and Zn in cells treated with H2O2. In conclusion, Thr, Trp, Gly, and VC supplements were effective in improving cell viability and intestinal barrier function of cIECs exposed to oxidative stress.

Integrative Analysis of Probiotic-Mediated Remodeling in Canine Gut Microbiota and Metabolites Using a Fermenter for an Intestinal Microbiota Model

  • Anna Kang;Min-Jin Kwak;Hye Jin Choi;Seon-hui Son;Sei-hyun Lim;Ju Young Eor;Minho Song;Min Kyu Kim;Jong Nam Kim;Jungwoo Yang;Minjee Lee;Minkyoung Kang;Sangnam Oh;Younghoon Kim
    • Food Science of Animal Resources
    • /
    • v.44 no.5
    • /
    • pp.1080-1095
    • /
    • 2024
  • In contemporary society, the increasing number of pet-owning households has significantly heightened interest in companion animal health, expanding the probiotics market aimed at enhancing pet well-being. Consequently, research into the gut microbiota of companion animals has gained momentum, however, ethical and societal challenges associated with experiments on intelligent and pain-sensitive animals necessitate alternative research methodologies to reduce reliance on live animal testing. To address this need, the Fermenter for Intestinal Microbiota Model (FIMM) is being investigated as an in vitro tool designed to replicate gastrointestinal conditions of living animals, offering a means to study gut microbiota while minimizing animal experimentation. The FIMM system explored interactions between intestinal microbiota and probiotics within a simulated gut environment. Two strains of commercial probiotic bacteria, Enterococcus faecium IDCC 2102 and Bifidobacterium lactis IDCC 4301, along with a newly isolated strain from domestic dogs, Lactobacillus acidophilus SLAM AK001, were introduced into the FIMM system with gut microbiota from a beagle model. Findings highlight the system's capacity to mirror and modulate the gut environment, evidenced by an increase in beneficial bacteria like Lactobacillus and Faecalibacterium and a decrease in the pathogen Clostridium. The study also verified the system's ability to facilitate accurate interactions between probiotics and commensal bacteria, demonstrated by the production of short-chain fatty acids and bacterial metabolites, including amino acids and gamma-aminobutyric acid precursors. Thus, the results advocate for FIMM as an in vitro system that authentically simulates the intestinal environment, presenting a viable alternative for examining gut microbiota and metabolites in companion animals.