• 제목/요약/키워드: intestinal metabolism

검색결과 185건 처리시간 0.024초

한약의 독물동태학적 특성 (The Toxicokinetic Characteristics of Korean Traditional Medicines)

  • 박영철;신헌태;이선동
    • 대한예방한의학회지
    • /
    • 제15권2호
    • /
    • pp.1-19
    • /
    • 2011
  • Toxicokinetics of Korean Traditional Medicines(TKM) is the description of what rate TKM will enter the body and what happens to it once it is in the body in terms of toxicology. However, it is not easy to understand TKM toxicokinetics because of various factors such as a mixture of 2-30 kinds of herbal materials containing thousands of chemicals, and complex chemical properties. For these reasons, little is known about toxicokinetics of TKM. This study was aimed to characterize and review the absorption, distribution and metabolism of korean traditional medicines in a view of toxicokinetics. For this aim, some of korean traditional medicines were reviewed on a basis of drug-drug interaction, biotransformation and intestinal metabolisms by bacteria. As the factors affecting mainly on toxicokinetics of TKM, individual herbal material's degree of lipophilicity and metabolic rate, and decoction components according to different kinds of herbal materials were considered. Other factors such as intestinal pH and bacterial activity for metabolism affecting on TKM toxicokinetics, especially in small intestine. It would be a better way for improving the adverse or poor effects caused by TCM if the factors affecting on toxicokinetics of TKM is considered.

사람의 장내세균에 의한 인삼사포닌의 대사 (Metabolism of Ginseng Saponins by Human Intestinal Bacteria)

  • 성종환;장곡천수부;송궁지지;내산아수;하주영;이문순;허재두
    • 생약학회지
    • /
    • 제26권4호
    • /
    • pp.360-367
    • /
    • 1995
  • The metabolism of ginseng saponins by human intestinal bacteria was studied using human feces under anaerobic culture conditions. $Ginsenoside-Rb_1$, $-Rb_2$ and -Rc(protopanaxadiol type) were mainly metabolized to compound-K(C-K), $20-O-[{\alpha}-L-arabinopyranosyl(1{\rightarrow}6)-{\beta}-{_D}-glucopyranosyl]-20(S)-protopanaxadiol(compound-Y,\;C-Y)$, $20-O-[{\alpha}-L-arabinopyranosyl(1{\rightarrow}6)-{\beta}-{_D}-glucopyranosyll-20(S)-protopanaxadiol(ginsenosied-MC,{\;}MC)$, respectively, and $ginsenoside-Rg_1$ and -Re(protopanaxatriol type) to their aglycon, 20(S)-protopanaxatriol, though the pathway and rate of the metabolism were affected by fermentation medium. C-K was not decomposed any more, while C-Y and Mc were both gradually hydrolyzed to C-K.

  • PDF

항암제 유발 말초신경병증환자와 유기산검사 마커와의 상관성 연구 (Correlation Analysis of Organic Acid Comprehensive Profile Markers with Chemotherapy Induced Peripheral Neuropathy in Cancer Patients)

  • 박지혜;성상엽;이진선;유화승
    • 대한한의학회지
    • /
    • 제38권1호
    • /
    • pp.72-80
    • /
    • 2017
  • Objectives: The purpose of this study is to evaluate the urinary organic acid comprehensive profile for chemotherapy induced peripheral neuropathy (CIPN). Methods: Participants are 66 patients with CIPN who had symptom (Visual analog scale ${\geq}30mm$, Eastern Cooperative Oncology Group ${\leq}2$). Participants were tested with organic acid comprehensive profile markers. Results: Positive Correlation was observed in the neurotransmitter metabolism markers, N-methyl-D-aspartate (NMDA) modulators markers, detoxification markers, energy production markers, amino acid metabolism markers, and intestinal dysbiosis markers. Especially, all the neurotransmitter metabolism markers were showed positive rate of 44%. In addition, neuro-endo-immune was associated with energy metabolism (mitochondrial dysfunction) in CIPN of cancer patient. especially detoxification, intestinal bacterial hyperplasia, vitamin deficiency (folate, complex B group, vitamin C). Conclusions: Significant urinary organic acid comprehensive profile results were obtained in cancer patients who induced peripheral neuropathy by chemotherapy.

L-arginine and N-carbamoylglutamic acid supplementation enhance young rabbit growth and immunity by regulating intestinal microbial community

  • Sun, Xiaoming;Shen, Jinglin;Liu, Chang;Li, Sheng;Peng, Yanxia;Chen, Chengzhen;Yuan, Bao;Gao, Yan;Meng, Xianmei;Jiang, Hao;Zhang, Jiabao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권1호
    • /
    • pp.166-176
    • /
    • 2020
  • Objective: An experiment was conducted to determine the effects of L-arginine (L-Arg) and N-carbamoylglutamic acid (NCG) on the growth, metabolism, immunity and community of cecal bacterial flora of weanling and young rabbits. Methods: Eighteen normal-grade male weanling Japanese White rabbits (JWR) were selected and randomly divided into 6 groups with or without L-Arg and NCG supplementation. The whole feeding process was divided into weanling stage (day 37 to 65) and young stage (day 66 to 85). The effects of L-Arg and NCG on the growth, metabolism, immunity and development of the ileum and jejunum were compared via nutrient metabolism experiments and histological assessment. The different communities of cecal bacterial flora affected by L-Arg and NCG were assessed using high-throughput sequencing technology and bioinformatics analysis. Results: The addition of L-Arg and NCG enhanced the growth of weanling and young rabbit by increasing the nitrogen metabolism, protein efficiency ratio, and biological value, as well as feed intake and daily weight gain. Both L-Arg and NCG increased the concentration of immunoglobulin A (IgA), IgM, and IgG. NCG was superior to L-Arg in promoting intestinal villus development by increasing villus height, villus height/crypt depth index, and reducing the crypt depth. The effects of L-Arg and NCG on the cecal bacterial flora were mainly concentrated in different genera, including Parabacteroides, Roseburia, dgA-11_gut_group, Alistipes, Bacteroides, and Ruminococcaceae_UCG-005. These bacteria function mainly in amino acid transport and metabolism, energy production and conversion, lipid transport and metabolism, recombination and repair, cell cycle control, cell division, and cell motility. Conclusion: L-Arg and NCG can promote the growth and immunity of weanling and young JWR, as well as effecting the jejunum and ileum villi. L-Arg and NCG have different effects in the promotion of nutrient utilization, relieving inflammation and enhancing adaptability through regulating microbial community.

Metabolism of Rutin and Poncirin by Human Intestinal Microbiota and Cloning of Their Metabolizing α-L-Rhamnosidase from Bifidobacterium dentium

  • Bang, Seo-Hyeon;Hyun, Yang-Jin;Shim, Juwon;Hong, Sung-Woon;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권1호
    • /
    • pp.18-25
    • /
    • 2015
  • To understand the metabolism of flavonoid rhamnoglycosides by human intestinal microbiota, we measured the metabolic activity of rutin and poncirin (distributed in many functional foods and herbal medicine) by 100 human stool specimens. The average α-L-rhamnosidase activities on the p-nitrophenyl-α-L-rhamnopyranoside, rutin, and poncirin subtrates were 0.10 ± 0.07, 0.25 ± 0.08, and 0.15 ± 0.09 pmol/min/mg, respectively. To investigate the enzymatic properties, α-L-rhamnosidase-producing bacteria were isolated from the specimens, and the α-L-rhamnosidase gene was cloned from a selected organism, Bifidobacterium dentium, and expressed in E. coli. The cloned α-L-rhamnosidase gene contained a 2,673 bp sequcence encoding 890 amino acid residues. The cloned gene was expressed using the pET 26b(+) vector in E. coli BL21, and the expressed enzyme was purified using Ni2+-NTA and Q-HP column chromatography. The specific activity of the purified α-L-rhamnosidase was 23.3 µmol/min/mg. Of the tested natural product constituents, the cloned α-L-rhamnosidase hydrolyzed rutin most potently, followed by poncirin, naringin, and ginsenoside Re. However, it was unable to hydrolyze quercitrin. This is the first report describing the cloning, expression, and characterization of α-L-rhamnosidase, a flavonoid rhamnoglycosidemetabolizing enzyme, from bifidobacteria. Based on these findings, the α-L-rhamnosidase of intestinal bacteria such as B. dentium seem to be more effective in hydrolyzing (1 →6) bonds than (1 →2) bonds of rhamnoglycosides, and may play an important role in the metabolism and pharmacological effect of rhamnoglycosides.

감초 함유 처방의 글리치리진 대사와 몇가지 효소저해효과 (Metabolism of Glycyrrhizin in Polyprescriptions Containing Glycyrrhizae Radix by Human Intestinal Bacteria and Their Inhibitory Effects on Some Enzymes)

  • 김남재;배은아;한명주;김동현
    • 생약학회지
    • /
    • 제30권3호
    • /
    • pp.269-274
    • /
    • 1999
  • To analyze scientifically the prescription principle of polyprescriptions (Gamchotang, Daewhanggamchotang, Jakyakgamchotang, Gamchogungangtang and Gilkyungtang) containing Glycyrrhizae Radix, the transforming rate of glycyrrhizin in these polyprescriptions to 18 ${\beta}-glycyrrhetinic$ acid and their inhibitory effect on ${\beta}-glucuronidase$, hyaluronidase, phosphodiesterase and trypsin were investigated. When Glycyrrhizae Radix containing polyprescriptions were extracted with water, the contents of glycyrrhizin in water extract of Glycyrrhizae Radix with Rhei Rhizoma or with Zingiberis Rhizoma were higher than that of Glycyrrhizae Radix only, but that in water extract of Glycyrrhizae Radix with Platicodi Radix was lower than that of Glycyrrhizae Radix only. By human intestinal bacteria, glycyrrhizin was metabolized to 18 ${\beta}-glycyrrhetinic$ acid. These metabolism of glycyrrhizin in polyprescriptions containing Glycyrrhizae Radix was inhibited by Rhei Rhizoma, Paeoniae Radix and Platicodi Radix, but was not affected by Zingiberis Rhizoma. The inhibitory activity of Glycyrrhizae Radix on hyaluronidase and ${\beta}-glucuronidase$, was synergistic with Rhei Rhizoma or Zingiberis Rhizoma, but was antagonistic by Platicodi Radix.

  • PDF

Intestinal Bacterial Metabolism of Flavonoids and Its Relation to Some Biological Activities

  • Kim, Dong-Hyun;Jung, Eun-Ah;Sohng, In-Suk;Han, Jung-Ah;Kim, Tae-Hyung;Han, Myung-Joo
    • Archives of Pharmacal Research
    • /
    • 제21권1호
    • /
    • pp.17-23
    • /
    • 1998
  • Flavonoid glycosides were metabolized to phenolic acids via aglycones by human intestinal microflora producing ${\alpha}$-rhamnosidase, exo-${\beta}$-glucosidase, endo- ${\beta}$-glucosidase and/or ${\beta}$-glucuronidase. Rutin, hesperidin, naringin and poncirin were transformed to their aglycones by the bacteria producing ${\alpha}$-rhamnosidase and ${\beta}$-glucosidase or endo- ${\beta}$-glucosidase, and baicatin, puerarin and daidzin were transformed to their aglycones by the bacteria producing ${\beta}$glucuronidase, C-glycosidase and ${\beta}$-glycosidase, respectively. Anti-platelet activity and cytotoxicity of the metabolites of flavonoid glycosides by human intestinal bacteria were more effective than those of the parental compounds. 3,4-Dihydroxyphenylacetic acid and 4-hydroxyl-phenylacetic acid were more effective than rutin and quercetin on anti-platelet aggregation activity. 2,4,6-Trihydroxybenzaidehyde, quercetin and ponciretin were more effective than rutin and ponciretin on the cytotoxicity for tumor cell lines. We insist that these flavonoid glycosides should be natural prodrugs.

  • PDF

Biotransformation of Panax ginseng extract by rat intestinal microflora: identification and quantification of metabolites using liquid chromatography-tandem mass spectrometry

  • Dong, Wei-Wei;Zhao, Jinhua;Zhong, Fei-Liang;Zhu, Wen-Jing;Jiang, Jun;Wu, Songquan;Yang, Deok-Chun;Li, Donghao;Quan, Lin-Hu
    • Journal of Ginseng Research
    • /
    • 제41권4호
    • /
    • pp.540-547
    • /
    • 2017
  • Background: In general, after Panax ginseng is administered orally, intestinal microbes play a crucial role in its degradation and metabolization process. Studies on the metabolism of P. ginseng by microflora are important for obtaining a better understanding of their biological effects. Methods: In vitro biotransformation of P. ginseng extract by rat intestinal microflora was investigated at $37^{\circ}C$ for 24 h, and the simultaneous determination of the metabolites and metabolic profile of P. ginseng saponins by rat intestinal microflora was achieved using LC-MS/MS. Results: A total of seven ginsenosides were detected in the P. ginseng extract, including ginsenosides Rg1, Re, Rf, Rb1, Rc, Rb2, and Rd. In the transformed P. ginseng samples, considerable amounts of deglycosylated metabolite compound K and Rh1 were detected. In addition, minimal amounts of deglycosylated metabolites (ginsenosides Rg2, F1, F2, Rg3, and protopanaxatriol-type ginsenosides) and untransformed ginsenosides Re, Rg1, and Rd were detected at 24 h. The results indicated that the primary metabolites are compound K and Rh1, and the protopanaxadiol-type ginsenosides were more easily metabolized than protopanaxatriol-type ginsenosides. Conclusion: This is the first report of the identification and quantification of the metabolism and metabolic profile of P. ginseng extract in rat intestinal microflora using LC-MS/MS. The current study provided new insights for studying the metabolism and active metabolites of P. ginseng.

Metabolism of glycyrrhizin and baicalin by human intestinal bacteria

  • Kim, Dong-Hyun;Jang, Il-Sung;Lee, Hyeong-Kyu;Jung, Eun-Ah;Lee, Kyeu-Yup
    • Archives of Pharmacal Research
    • /
    • 제19권4호
    • /
    • pp.292-296
    • /
    • 1996
  • By human intestinal bacteria, glycyrrhizin (18${\beta}$-glycyrrhetic acid ${beta}$-D-glucuronyl.${\alpha}$-D-glucuronic acid, GL) and baicalin (baicalein ${\beta}$-D-glucuronic acid) were metabolized to glycyrrhetinic acid and baicalin, respectively. However, .${\alpha}$-glucuronidase of Bacteroides JY-6 isolated from human intestinal bacteria hydrolyzed GL or 18.${\beta}$-glycyrrhetinic acid ..${\alpha}$-D-glucuronic acid to 18${\beta}$-glycyrrhetic acid but did not baicalin. However, E. coli ${\beta}$-glucironidase from human intestinal bacteria hydrolyzed baicalin to baicalein, but did not GL.${\beta}$-Glucuronidase of mammalian tissues hydrolyzed both GL and baicalin.

  • PDF