• Title/Summary/Keyword: intestinal and fecal microflora

Search Result 75, Processing Time 0.026 seconds

Effects of dietary lysozyme supplementation on growth performance, nutrient digestibility, intestinal microbiota, and blood profiles of weanling pigs challenged with Escherichia coli

  • Park, Jae Hong;Sureshkumar, Shanmugam;Kim, In Ho
    • Journal of Animal Science and Technology
    • /
    • v.63 no.3
    • /
    • pp.501-509
    • /
    • 2021
  • The aim of this was evaluate the efficacy of lysozyme on growth performance, nutrient digestibility, excreta microflora population, and blood profiles of weanling pigs under Escherichia coli (E. coli) challenge. A total of 30 piglets weaned at 25 days, 7.46 kg body weight, were assigned to three dietary treatments, composed of five replications, two piglets per replication, for 7 days. The dietary treatment groups were negative control (NC; without antibiotics and lysozyme), positive control (PC; NC + antibiotics), lysozyme (NC + 0.1% lysozyme). All piglets were challenged orally with 6 ml suspension, containing E. coli K88 (2 × 109 CFU/mL). Dietary supplementation with lysozyme and PC resulted in no significant differences in average daily gain and gain to feed efficiency. Weanling pigs fed with E. coli challenge with lysozyme and PC treatments had significantly enhanced nutrient retentions of dry matter and energy (p < 0.05); however, there was a tendency to increase nitrogen digestibility. Furthermore, dietary inclusion of lysozyme and antibiotics treatment groups had a beneficial effect on excreta, ileal, and cecal of the fecal microbial population as decreased E. coli (p < 0.05) counts, without effects on lactobacillus counts. A significant effect were observed on a white blood cells, epinephrine and cortisol concentrations were reduced in piglets fed diets containing E. coli challenge with lysozyme and antibiotics supplementation comparison with the NC group. Therefore, the present data indicate that lysozyme in diet could ameliorate the experimental stress response induced by E. coli in piglets by decreasing intestinal E. coli, white blood cells and stress hormones and improving nutrient digestibility.

Effects of feeding fermentation of spent mushroom substrate (FSMS) on growth performance in broiler chicks (버섯폐배지 발효사료 급여가 육계의 생산성에 미치는 영향)

  • Kim, Jung-Eun;Park, Sang-Kuk;Kim, Tae-Won;Mun, Man;Koh, Jae-Sang;Jeong, Seung-Ki;Kook, Kil
    • Korean Journal of Veterinary Service
    • /
    • v.33 no.4
    • /
    • pp.387-392
    • /
    • 2010
  • This experiment was conducted to investigate the effect of fermented spent mushroom substrate (FSMS) on growth performance, blood profile, intestinal microflora and ammonia gas production of feces in broiler chickens. A total of three hundred sixty, 1-day-old male broiler chicks (Ross) were randomly divided into 3 groups with 6 replicates of 20 birds each. The treatments were control (free FSMS), 15% FSMS (basal diet with 15% FSMS) and 30% FSMS (basal diet with 30% FSMS). The final body weight and body weight gains were slightly improved in 30% FSMS than control (P<0.05). Feed intake and feed conversion were significantly improved as compared to those of the control groups. The Leukocytes of blood serum in FSMS groups were significantly decreased as compared to those of control groups. There are no significant differences among the groups in the contents of albumin (ALB), total cholesterol (TCHO), glucose (GLU), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in blood serum. The content of total glucose (TG) in 30% FSMS containing dietary groups was significantly decreased as compared to that of the control groups. The content of HDLC in 30% FSMS containing dietary groups was significantly increased as compared to that of the control group. The number of lactobacillus in the intestinal microflora were significantly increased in chicks fed FSMS groups. The ammonia gas production in FSMS groups was siginificantly decreased as compard to that the control groups. These results indicated that dietary FSMS exerted growth performance for feeding broiler.

Fecal Microflora of Korean Neonates (한국인 신생아의 분변 미생물 균총)

  • Lee, Seung-Gyu;Jeong, Seok-Geun;Oh, Mi-Hwa;Kim, Dong-Hun;Kang, Dae-Kyung;Lee, Wan-Kyu;Ham, Jun-Sang
    • Journal of Dairy Science and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.1-6
    • /
    • 2009
  • Probiotic bacteria have been administered to neonates to serve as maturational stimuli for the developing gut and intestinal immune system, establish and develop the intestinal microbiota, and mediate host-microbe interactions; further, these bacteria have shown beneficial effects In the treatment and reduction of the risk of infectious diseases, necrotizing enterocolitis, and atopic disease. An LAB isolation project to identify effective lactic acid bacteria for Korean people is in progress. The average total counts of lactic acid bacteria, lactobacilli, bifidobacteria, and coliforms in the fecal samples from 2 provinces were estimated as 8.31, 5.98, 8.13, and 3.01 CFU/g. Additional samples from other provinces will be analyzed to examine the changes in the lactic bacterial counts according to the area, sex of the neonate, mode of delivery, and type of feeding. A database containing the 16S rDNA sequences and the ribosomal protein profile of all the lactic acid bacteria isolated from fecal samples will be constructed. For the effective use of probiotics, a number of clinical studies are needed to formulate guidelines for strain, subject, purpose, and dose.

  • PDF

Effects of Dietary Supplementation of Yeast Pichia farinosa on Performance, Intestinal Microflora, and Fecal $NH_{3}$ Emission in Laying Hens (효모 Pichia farinosa의 첨가 급여가 산란계의 생산능력, 장내미생물 변화 및 분의 암모니아 발생량에 미치는 영향)

  • 김상호;박수영;유동조;이상진;최철환;성창근;류경선
    • Korean Journal of Poultry Science
    • /
    • v.29 no.3
    • /
    • pp.205-211
    • /
    • 2002
  • A feeding trial was conducted to study the effects of a live yeast, Pichia farinosa culture(PF), on the production performance and intestinal microflora in laying hens. One hundred and sixty ISA Brown layers, 21 weeks of age, were randomly allotted to four dietary treatments, with four replicates per treatment. Dietary treatments consisted of four levels (0, 0.1, 0.3, and 0.5%) of PF added to a com-soybean meal based diet. Egg production, egg weight, feed intake and fred conversion ratio(FCR) were measured. Egg qualifies were examined at 25th and 29th weeks of age. A metabolism trial was conducted following the feeding trial, during which intestinal microflora, nutrient digestibility and fecal NH3 gas emission were measured. Egg production of birds fed 0.1 and 0.3% PF were significantly higher than those from birds fed 0 and 0.5% PF(P<0.05). Daily egg mass of 0.3% PF increased significantly compared to that of 0% PF. There was no difference in egg weight among all treatments. Feed conversion ratio was significantly improved as the PF level increased. No significant difference was found in eggshell quality and Haugh unit at both 25 and 29 weeks of age. Viable count of ileal Lactobacillus spp. increased significantly as the rf level increased. However, the total number of yeast and anaerobes in ileum were similar among all treatments. Cecal Lactobacillus spp. and yeast counts showed no difference among all treatments. Fecal NH$_{3}$ gas emission of layers fed PF decreased significantly by the PF supplementation. From the result of this experiment, it could be concluded that dietary supplementation of the live yeast Pichia farinosa improves the laying performance and decreases the fecal ammonia gas emission.

Induction and Inhibition of Iindole Production of Intestinal Bacteria

  • Kim, Dong-Hyun;Lee, Jae-Ho;Bae, Eun-Ah;Han, Myung-Joo
    • Archives of Pharmacal Research
    • /
    • v.18 no.5
    • /
    • pp.351-355
    • /
    • 1995
  • The fecal tryptophanase activities were $0.267{\pm}0.10$ for rats and $0.185{\pm}0.01{\;}{\mu}mole/min/g$ wet feces for humans. The activities of indole pyruvate degradation to indole, indole pyruvate lyase, of these feces were $0.051{\pm}0.02$ and $0.046{\pm}0.01{\;}{\mu}mole/min/g$ wet feces, respectively. The optimal pH values of tryptophanase and indole pyruvate lyase were 5.5-7.5 and 5.5-6.5, respectively. When the intestinal flora or E. coli HGU-3 was cultured in GAM broth having six different pH values (5 to 10), the activities of tryptophanase and indole pyruvate IYilse in the medium adjusted at pH 6 were dramatically induced by elevating the pH to 9. However, when intestinal microflora were inoculated in the medium containing lactulose, the pro¬ductions of these enzymes were dramatically inhibited and the pH of the medium was lower than that of the control.

  • PDF

Metabolism of Ginseng Saponins by Human Intestinal Bacteria (Park II) (사람의 장내세균에 의한 인삼 사포닌의 대사(제2보))

  • Hasegawa, Hideo;Ha, Joo-Young;Park, Se-Ho;Matumiya, Satoshi;Uchiyama, Masamori;Huh, Jae-Doo;Sung, Jong-Hwan
    • Korean Journal of Pharmacognosy
    • /
    • v.28 no.1
    • /
    • pp.35-41
    • /
    • 1997
  • Following ginsenoside-Rb1-hydrolyzing assay, strictly anaerobic bacteria were isolated from human feces and identified as Prevotella oris. The bacteria hydrolyzed ginsenoside Rb1 and Rd to $20-O-{\beta}-D-glucopyranosyl-20(S)-protopanaxadiol$ (I), ginsenoside Rb2 to $20-O-[{\alpha}-L-arabinofuranosyl (1{\rightarrow}6)-{\beta}-D-glucopyranosyl] - 20(S)-protopanaxadiol$ (ll) and ginsenoside Rc to $20-O-[{\alpha}-L-arabinofuranosyl (1{\rightarrow} 6){\beta}-D-g1ucopyranosyl]-20(S)-protopanaxadiol$ (III) like fecal microflora, but did not attack ginsenoside Re nor Rgl (Protopanaxatriol-type). Pharmacokinetic studies of ginseng saponins was also performed using specific pathogen free rats and demonstrated that the intestinal bacterial metabolites I-111, 20(S)- protopanaxatriol(IV) and 20(S)-protopanaxadiol(V) were absorbed from the intestines to $blood(0.4-5.1\;{\mu}g/ml)$ after oral administration with total saponin(1 g/kg/day).

  • PDF

Potentials of Synbiotics for Pediatric Nutrition and Baby Food Applications: A Review (소아 영양 및 유아식 응용을 위한 신바이오틱스의 잠재력: 총설)

  • Jung, Hoo Kil;Kim, Sun Jin;Seok, Min Jeong;Cha, Hyun Ah;Yoon, Seul Ki;Lee, Nah Hyun;Kang, Kyung Jin
    • Journal of Dairy Science and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.111-118
    • /
    • 2015
  • Probiotic, prebiotic, and synbiotic substances as well as microorganisms were added to infant formula in an attempt to influence the intestinal microflora with an aim to stimulate the growth of lactic acid bacteria, especially bifidobacteria and lactobacilli. Over the last 10 years, new synbiotic infant formulas containing probiotics and prebiotics have been proposed in order to simulate the effect of breast-feeding on the intestinal microflora. Owing to their synergistic effect, the new synbiotics are expected to be more helpful than using probiotics and prebiotics individually. Maintenance of the viability of the probiotics during food processing and the passage through the gastrointestinal tract should be the most important consideration, since a sufficient number of bacteria ($10^8cfu/g$) should reach the intended location to have a positive effect on the host. Storage conditions and the processing technology used for the manufacture of products such as infant formula adversely affect the viability of the probiotics. When an appropriate and cost-effective microencapsulation methodology using the generally recognized as safe (GRAS) status and substances with high biological value are developed, the quality of infant formulas would improve. The effect of probiotics may be called a double-effect, where one is an immunomodulatory effect, induced by live probiotics that advantageously alter the gastrointestinal microflora, and the other comprises anti-inflammatory responses elicited by dead cells. At present, a new terminology is required to define the dead microorganisms or crude microbial fractions that positively affect health. The term "paraprobiotics" (or ghost probiotics) has been proposed to define dead microbial cells (not damaged or broken) or crude cell extracts (i.e., cell extracts with complex chemical composition) that are beneficial to humans and animals when a sufficient amount is orally or topically administered. The fecal microflora of bottle-fed infants is altered when the milk-based infant formula is supplemented with probiotics or prebiotics. Thus, by increasing the proportion of beneficial bacteria such as bifidobacteria and lactobacilli, prebiotics modify the fecal microbial composition and accordingly regulate the activity of the immune system. Therefore, considerable attention has been focused on the improvement of infant formula quality such that its beneficial effects are comparable to those of human milk, using prebiotics such as inulin and oligosaccharides and potential specific probiotics such as bifidobacteria, which selectively stimulate the proliferation of beneficial bacteria in the microflora and the indigenous intestinal metabolic activity of the microflora.

  • PDF

Effects of dietary supplementation with Pediococcus acidilactici ZPA017 on reproductive performance, fecal microbial flora and serum indices in sows during late gestation and lactation

  • Liu, Hui;Wang, Sixin;Zhang, Dongyan;Wang, Jing;Zhang, Wei;Wang, Yamin;Ji, Haifeng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.1
    • /
    • pp.120-126
    • /
    • 2020
  • Objective: This study was conducted to determine the effects of dietary supplementation with Pediococcus acidilactici (P. acidilactici) ZPA017 as a probiotic on reproductive performance, fecal microbial flora and serum indices in sows during late gestation and lactation. Methods: A total of 94 sows (Large White×Yorkshire, average 4.50 parities) were randomly allotted to two dietary treatments: control diet and the diet supplemented with P. acidilactici ZPA017 (2.40×109 colony-forming unit/kg of diets). The study started at d 90 of gestation and conducted until d 28 of lactation. Results: Compared to sows fed the control diet, supplementation of P. acidilactici ZPA017 increased the number of weaning piglets, weaning weight of litter and piglets, survival rate of piglets at weaning (p<0.05), and decreased diarrhea rate of piglets in lactation (p<0.05). Dietary P. acidilactici ZPA017 increased fecal Lactobacillus populations (p = 0.030) and reduced fecal Escherichia coli and Staphylococcus aureus populations (p<0.05) of sows at weaning. Moreover, the supplementation of P. acidilactici ZPA017 increased serum concentrations of immunoglobulin G, immunoglobulin A and total protein (p<0.05), while decreased serum haptoglobin concentration and alanine aminotransferase activity (p<0.05) of sows at weaning. Conclusion: Administration of P. acidilactici ZPA017 in diets during late gestation and lactation had positive effects on the reproductive performance, intestinal microflora balance and immunity of sows.

Effect of Wood Vinegar on the Performance, Nutrient Digestibility and Intestinal Microflora in Weanling Pigs

  • Choi, J.Y.;Shinde, P.L.;Kwon, I.K.;Song, Y.H.;Chae, Byung-Jo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.2
    • /
    • pp.267-274
    • /
    • 2009
  • Two experiments were conducted to investigate the feeding value of wood vinegar in weanling pigs. In Experiment 1, weanling pigs (n = 224; Landrace ${\times}$Yorkshire ${\times}$Duroc, 21${\pm}$3 d-old, initial BW 6.12${\pm}$0.10 kg) were assigned to four dietary treatments. Different levels of wood vinegar were added to the diets as dietary treatments (0, 0.1, 0.2 and 0.3%). Each treatment comprised 4 replicates with 14 piglets in each. Experimental feeding was conducted for 28 d in two phases (phase I, d 0 to 14 and phase II, d 15 to 28). Feeding of wood vinegar linearly (p<0.05) improved the phase I, phase II and overall ADG and increased (linear, p<0.05) the overall and phase II ADFI. Linear improvements in the apparent fecal digestibility of dry matter (p = 0.013), gross energy (p = 0.019) and crude protein (p = 0.033) were observed as the level of wood vinegar was increased in the diet of pigs. Experiment 2 was conducted to compare dietary wood vinegar with commonly used growth promoters, organic acid (mixture of 21% phosphoric acid, 3.25% propionic acid, 2.8% formic acid, 10% calcium formate and 5% calcium propionate) and antibiotic (aparamycin). A total of 288 weanling piglets (Landrace ${\times}$Yorkshire ${\times}$Duroc, 22${\pm}$2 d-old, initial BW 6.62${\pm}$0.31 kg) were assigned to four treatments with four replicates (18 piglets/pen) for 28 days and fed in 2 phases: phase I, d 0 to 14 and phase II, d 15 to 28. The dietary treatments were control (corn-soybean meal basal diet without antibiotics) and diets containing 0.2% antibiotic, 0.2% organic acid and 0.2% wood vinegar. Pigs fed antibiotic showed higher (p<0.001) ADG and better feed efficiency followed by pigs fed wood vinegar and organic acid diets while those fed the control diet had lowest ADG and poorest feed efficiency. The overall and phase I ADFI was highest (p<0.001) in pigs fed wood vinegar and lowest in pigs fed the control diet. Apparent fecal digestibility of dry matter, gross energy and crude protein was significantly higher (p<0.05) in pigs fed the antibiotic diet when compared with pigs fed the control but comparable among pigs fed antibiotic, organic acid and wood vinegar diets. Higher populations of Lactobacillus (p = 0.004) were noted in the ileum of pigs fed the wood vinegar diet, while the population of coliforms in the ileum and cecum was higher (p<0.001) in pigs fed the control diet when compared with pigs fed antibiotic, organic acid or wood vinegar diets. These results indicated that wood vinegar could improve the performance of weanling pigs by improving the nutrient digestibility and reducing harmful intestinal coliforms; moreover performance of pigs fed wood vinegar was superior to those fed organic acid.

Effects of the Fructooligosaccharide Intake on Human Fecal Microflora and Fecal Properties (Fructooligosaccharide의 섭취에 의한 인체의 장내세균(腸內細菌) 및 분변(糞便) 성상의 변화)

  • Kang, Kook-Hee;Kim, Kyung-Min;Choi, Sun-Gyu
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.609-615
    • /
    • 1996
  • To study the effects of the fructooligosaccharide (FOS) intake on the intestinal microflora, the FOS (8g) was served to each of 5 volunteers (adult men $23{\sim}28$ years old) after every lunch for 4 weeks. Changes in fecal microflora, fecal moisture, and fecal pH were observed during the FOS intake and after the FOS intake, respectively. The fecal moisture content of the control period (4 weeks before the intake of FOS) was $81.77{\pm}1.18%$. The moisture content of the feces increased significantly at the end of the 4th week of FOS intake, and these effects lasted for 3 weeks after stopping FOS intake. The fecal pH before FOS intake was $6.56{\pm}0.09%$, while it decreased significantly (p<0.01) during the period of FOS intake. The pH reduction lasted for 4 weeks after stopping the intake of FOS. The log fecal number of Bifidobacteria during the period was $7.88{\pm}1.43%$ (CFU/g of wet feces) and it increased significantly during the FOS intake. After stopping the intake of FOS, the number of Bifidobacteria returned to those of control period. The log fecal number of Lactobacilli before the intake was $6.76{\pm}1.34%$ and significantly increased in 3 weeks due to the FOS intake. After stopping the intake of FOS, however, the number of Lactobacilli returned to those of control period. No remarkable changes were observed in the number of coliforms throughout all durations.

  • PDF