• Title/Summary/Keyword: intersection stopping time

Search Result 11, Processing Time 0.022 seconds

Design and Implementation of Green Light Optimal Speed Advisory Based on Reference Mobility Models (GLOSA-RMM) in Cyber-Physical Intersection Systems (CPIS) (사이버-물리 교차로 시스템에서 참조이동모형 기반 녹색신호 최적화 가속도 조언의 설계 및 구현)

  • Jeong, Han-You;Suramardhana, Tommy Adhyasa;Nguyen, Hoa-Hung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.8
    • /
    • pp.544-554
    • /
    • 2014
  • In this paper, we introduce a cyber-physical intersection systems (CPIS) which intimately interconnects roadside units (RSU) located at intersection, on-board units (OBU) of moving vehicles, and smartphone apps. Based on the architecture of CPIS, we also present a green light optimal speed advisory based on the reference mobility models (GLOSA-RMM) to reduce intersection stopping time (IST) and fuel consumption. Based on several reference mobility models, the GLOSA-RMM determines the appropriate speed advisory by taking into account the current mobility and the intersection traffic light status, and then provides screen/voice GLOSA instructions to minimize the driver's distraction. We show that the GLOSA-RMM can reduce both the IST and the fuel consumption through the numerical results obtained from the prototype of the CPIS consisting of the OBU, the RSU and the smartphone app.

A Study on the Development of an Economic Efficiency Model Considering Vehicle Operating Cost Properties of Signalized Intersections (신호교차로의 차량운행비용 특성을 고려한 경제성분석 모형개발)

  • Byeon, Eun-A;Kim, Yeong-Chan;An, So-Yeong;Go, Gwang-Deok;Yun, Su-Yeong
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.2
    • /
    • pp.199-206
    • /
    • 2009
  • In relation with economical efficiency analysis on investment evaluation of transportation system, among vehicle operating cost saving benefit that is applied to general preliminary assessment guidelines and investment evaluation guidelines, oil expense calculated data which concentrated and analyze on the relationship between oil consumption amount on running state and running speed. For uninterrupted flow which does not have stopped delay due to traffic signal, consideration for reduction benefit is possible due to the changes of running speed and travel time however, for interrupted flow which the stopping occurs due to signal control on actual signal intersection has no consideration for stopping delay time reduction and stopping rate improvement thus reflection of reality on improved effect analysis is difficult. Therefore, this research makes a framework to analyze benefits that reflects the features of signalized intersections by benefits associated with decrease of stopping delay time with existing research and developing vehicle operating cost calculation model formula. Vehicle operating cost has been redefined considering the stopping delay time by applying the oil consumption amount at idling and the economical benefit between conventional model and newly developed model when applied for the optimization of traffic signal system on the two roads in Seosan city has been analyzed comparative. While the importance of traffic system maintenance is being emphasized due to the increase of congested areas on roads, it is expected to assist in more realistic economical analysis which reflect the delay improvement through the presentation of an economic analysis model that considers the features of signalized intersections in signal optimization system improvements and effect analysis of congestion improvement projects`.

Analysis of Bicycle Crossing Times at Signalized Intersections for Providing Safer Right of Bicycle Users (자전거 이용자 행태 반영을 위한 신호교차로에서의 자전거 횡단시간 연구)

  • Son, Young-Tae;Lee, JIn-Kak;Lee, Sang-Hwa;Kim, Hong-Sang
    • International Journal of Highway Engineering
    • /
    • v.9 no.3
    • /
    • pp.83-89
    • /
    • 2007
  • When allocating traffic signal at the signalized intersection, minimum green time and clearance time for bicyclists should be significantly considered in order to enhance safety aspects to bicyclists when crossing intersections, especially where intersections with exclusive bicycle paths that are physically separated from pedestrians. In this study, field measurements related to bicycle crossing time, including minimum peen time and clearance time, were collected and analyzed according to bicycles crossing types at the signalized intersections where high rate of bicyclists exists. Three types of bicycle crossing are defined as follows 1) stopping: completely stop before crossing (at least one foot on found) 2) riding: crossing with riding bicycle 3) pulling: crossing without riding bicycles. Minimum green time based on pedestrian speeds should be used as crossing time in this case. For bicyclists, speed of bicycle that is applicable to estimate the minimum green time is in the 1.36m/sec($15^{th}$ percentile) to 1.60m/sec($25^{th}$ percentile) range in case of its stopping. Also it is in the 0.75($15^{th}$ percentile) to 0.87($25^{th}$ percentile) range for pulling at crosswalk. In addition, speed of bicycle to consider for calculating the clearance time is in the 2.51m/sec($15^{th}$ percentile) to 2.79m/sec($25^{th}$ percentile). These values also resulted from $15^{th}$ percentile or $25^{th}$ percentile speeds of riding. The results of this study are expected to be supported in traffic signal allocation process, reflecting bicyclists' characteristics.

  • PDF

A Study on Driver Behavior and Dilemma Zone during Yellow Interval at Signalized Intersections (신호교차로 황색현시에서의 운전자 형태 및 딜레마 구간 연구방안)

  • 이승환;이성호;박주남
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.4
    • /
    • pp.7-16
    • /
    • 2003
  • Objective of this research is to analyze drivers' behaviors at signalized intersection during yellow interval. For this, deceleration rate of stopping, PRT(Perception-Response Time), and the relationship between dilemma zone and deceleration rate of stopping were surveyed at two signalized intersections located at urban area(Songtan and Suwon) and local area(Yongin) As a result, the deceleration rate of stopping at signalized intersections and a range of dilemma zone were estimated. It was found that the deceleration rate of stopping and PRT were 1.6m/sec$^2$ and 1.27sec, respectively. These values are bigger than ITE's values which have been used in our country. Accordingly, it is considered that these values should be used as a new design criteria for the traffic signal control.

A Study on the Impact of AI Edge Computing Technology on Reducing Traffic Accidents at Non-signalized Intersections on Residential Road (이면도로 비신호교차로에서 AI 기반 엣지컴퓨팅 기술이 교통사고 감소에 미치는 영향에 관한 연구)

  • Young-Gyu Jang;Gyeong-Seok Kim;Hye-Weon Kim;Won-Ho Cho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.79-88
    • /
    • 2024
  • We used actual field data to analyze from a traffic engineering perspective how AI and edge computing technologies affect the reduction of traffic accidents. By providing object information from 20m behind with AI object recognition, the driver secures a response time of about 3.6 seconds, and with edge technology, information is displayed in 0.5 to 0.8 seconds, giving the driver time to respond to intersection situations. In addition, it was analyzed that stopping before entering the intersection is possible when speed is controlled at 11-12km at the 10m point of the intersection approach and 20km/h at the 20m point. As a result, it was shown that traffic accidents can be reduced when the high object recognition rate of AI technology, provision of real-time information by edge technology, and the appropriate speed management at intersection approaches are executed simultaneously.

Effectiveness Analysis of Exclusive Median Bus Lane that Uses Microsimulation (미시적 시뮬레이션을 이용한 중앙버스전용차로 효과분석)

  • Kim, Myung Soo
    • International Journal of Highway Engineering
    • /
    • v.15 no.2
    • /
    • pp.159-167
    • /
    • 2013
  • PURPOSES : In this study, the effects of when median exclusive bus lanes were applied to Daejeon trunk road (Wolpyeng crossway~Seodaejeon crossway, 6.3km) and (Daeduck Bridge 4~Kyeryong 4, 2.6km) by Microscopic Simulation VISSIM (5.0) was studied. The median exclusive bus lanes are one of the measures of transportation system manage techniques that can especially improve the efficiency of public transportation facilities. METHODS : According to the analysis of VISSIM on the Gyerong mainroad and Daedeok mainroad, when the median exclusive bus lanes were applied unlike when the roadside bus-only lanes were applied, the average travel speed of vehicles decreased but the average delay time and travel time increased. This arised from the changes in the geometric structure of the road which occurred the reduction of vehicle lane in the center of the road. RESULTS : In the case of bus, on the other hand, the average travel speed increased but the average delay time and travel time decreased. This is because the problems such as illegal parking and stopping, secondary road in out vehicle, and conflict of intersection right turn that roadside bus-only lanes occurred was solved. CONCLUSIONS : Although the introduction of median exclusive bus lanes will have a negative effect on general traffic flow due to the aggravation of travel, decrease of passenger car usage will lead to decrease of traffic volume. Therefore, smooth vehicle travel is expected.

Analysis on Intersection Traffic Signal Locations Change and Characteristics of Dilemma Zone (교차로 신호기 위치 조정과 딜레마존 특성 분석)

  • Lim, Sam Jin;Lee, Young-Ihn;Kim, Kyung Hee
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.1
    • /
    • pp.3-13
    • /
    • 2013
  • This paper reviews the characteristics of dilemma zone by analysing the influence exerted by actual location of intersection traffic signal on behaviour of drivers approaching signalized intersection in urban area. The analysis of approach speed was based upon a 'before and after' comparison, measured at three sites where the locations of traffic signals were changed. The study demonstrated that, when traffic signal changed to yellow, the scales of dilemma zone were narrowed in case of stopping cars by moving up the starting point of the dilemma zone due to lowered spot speed. On the other hand, in case of passing cars, the end points of dilemma zone were moved further out to the rear due to increased spot speed. Therefore, changing traffic signal locations could make an impact to increase intersection safety through reducing the scales of dilemma zone. This study also found that, in cases involving vehicles with similar approach speeds, spot speeds could be differentiated following the change of signal locations due to the fact that there can be greater differences in both braking point and deceleration rate. Thus, when considering the appropriate measuring of dilemma zone, 'spot speed' rather than 'approach speed' appeared to be more appropriate criterion.

Development of the U-turn Accident Model at 4-Legged Signalized Intersections in Urban Areas (도시부 4지 신호교차로 유턴 사고모형 개발)

  • Kang, JongHo;Kim, KyungWhan;Ha, ManBok;Kim, SeongMun
    • International Journal of Highway Engineering
    • /
    • v.16 no.2
    • /
    • pp.119-129
    • /
    • 2014
  • PURPOSES : The purpose of this study is to develop the U-turn accident model at 4-legged signalized intersections in urban areas. METHODS : In order to analyze the characteristics of the accidents which are associated with U-turn operation at 4-legged signalized intersections in urban areas and develop an U-turn accident model by regression analysis, the tests of overdispersion and zero-inflation are conducted about the dependent variables of number of accidents and EPDO (Equivalent Property Damage Only). RESULTS : As their results, the Poisson model fits best for number of accident and the ZIP (Zero Inflated Poisson) fits best for EPOD, the variables of conflict traffic, width of opposing road, traffic passing speed are adopted as independent variable for both models. The variables of number of bus berths and rate of U-turn signal time at which the U-turn is permitted are adopted as independent variable only for EPDO. CONCLUSIONS : These study results suggest that U-turn would be permitted at the intersection where the width of opposing road is wider than 11.9 meters, the passing vehicle speed is not high and U-turn operation is not hindered by the buses stopping at bus stops.

Development of a Driver Safety Information Service Model Using Point Detectors at Signalized Intersections (지점검지자료 기반 신호교차로 운전자 안전서비스 개발)

  • Jang, Jeong-A;Choe, Gi-Ju;Mun, Yeong-Jun
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.5
    • /
    • pp.113-124
    • /
    • 2009
  • This paper suggests a new approach for providing information for driver safety at signalized intersections. Particularly dangerous situations at signalized intersections such as red-light violations, accelerating through yellow intervals, red-light running, and stopping abruptly due to the dilemma zone problem are considered in this study. This paper presents the development of a dangerous vehicle determination algorithm by collecting real-time vehicle speeds and times from multiple point detectors when the vehicles are traveling during phase-change. For an evaluation of this algorithm, VISSIM is used to perform a real-time multiple detection situation by changing the input data such as various inflow-volume, design speed change, driver perception, and response time. As a result the correct-classification rate is approximately 98.5% and the prediction rate of the algorithm is approximately 88.5%. This paper shows the sensitivity results by changing the input data. This result showed that the new approach can be used to improve safety for signalized intersections.

DEVELOPMENT OF SAFETY-BASED LEVEL-OF-SERVICE CRITERIA FOR ISOLATED SIGNALIZED INTERSECTIONS (독립신호 교차로에서의 교통안전을 위한 서비스수준 결정방법의 개발)

  • Dr. Tae-Jun Ha
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.02a
    • /
    • pp.3-32
    • /
    • 1995
  • The Highway Capacity Manual specifies procedures for evaluating intersection performance in terms of delay per vehicle. What is lacking in the current methodology is a comparable quantitative procedure for ass~ssing the safety-based level of service provided to motorists. The objective of the research described herein was to develop a computational procedure for evaluating the safety-based level of service of signalized intersections based on the relative hazard of alternative intersection designs and signal timing plans. Conflict opportunity models were developed for those crossing, diverging, and stopping maneuvers which are associated with left-turn and rear-end accidents. Safety¬based level-of-service criteria were then developed based on the distribution of conflict opportunities computed from the developed models. A case study evaluation of the level of service analysis methodology revealed that the developed safety-based criteria were not as sensitive to changes in prevailing traffic, roadway, and signal timing conditions as the traditional delay-based measure. However, the methodology did permit a quantitative assessment of the trade-off between delay reduction and safety improvement. The Highway Capacity Manual (HCM) specifies procedures for evaluating intersection performance in terms of a wide variety of prevailing conditions such as traffic composition, intersection geometry, traffic volumes, and signal timing (1). At the present time, however, performance is only measured in terms of delay per vehicle. This is a parameter which is widely accepted as a meaningful and useful indicator of the efficiency with which an intersection is serving traffic needs. What is lacking in the current methodology is a comparable quantitative procedure for assessing the safety-based level of service provided to motorists. For example, it is well¬known that the change from permissive to protected left-turn phasing can reduce left-turn accident frequency. However, the HCM only permits a quantitative assessment of the impact of this alternative phasing arrangement on vehicle delay. It is left to the engineer or planner to subjectively judge the level of safety benefits, and to evaluate the trade-off between the efficiency and safety consequences of the alternative phasing plans. Numerous examples of other geometric design and signal timing improvements could also be given. At present, the principal methods available to the practitioner for evaluating the relative safety at signalized intersections are: a) the application of engineering judgement, b) accident analyses, and c) traffic conflicts analysis. Reliance on engineering judgement has obvious limitations, especially when placed in the context of the elaborate HCM procedures for calculating delay. Accident analyses generally require some type of before-after comparison, either for the case study intersection or for a large set of similar intersections. In e.ither situation, there are problems associated with compensating for regression-to-the-mean phenomena (2), as well as obtaining an adequate sample size. Research has also pointed to potential bias caused by the way in which exposure to accidents is measured (3, 4). Because of the problems associated with traditional accident analyses, some have promoted the use of tqe traffic conflicts technique (5). However, this procedure also has shortcomings in that it.requires extensive field data collection and trained observers to identify the different types of conflicts occurring in the field. The objective of the research described herein was to develop a computational procedure for evaluating the safety-based level of service of signalized intersections that would be compatible and consistent with that presently found in the HCM for evaluating efficiency-based level of service as measured by delay per vehicle (6). The intent was not to develop a new set of accident prediction models, but to design a methodology to quantitatively predict the relative hazard of alternative intersection designs and signal timing plans.

  • PDF