• Title/Summary/Keyword: internal radiation exposure

Search Result 137, Processing Time 0.019 seconds

DEVELOPMENT OF THE DUAL COUNTING AND INTERNAL DOSE ASSESSMENT METHOD FOR CARBON-14 AT NUCLEAR POWER PLANTS

  • Kim, Hee-Geun;Kong, Tae-Young;Han, Sang-Jun;Lee, Goung-Jin
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.2
    • /
    • pp.55-64
    • /
    • 2009
  • In a pressurized heavy water reactor (PHWR), radiation workers who have access to radiation controlled areas submit their urine samples to health physicists periodically; internal radiation exposure is evaluated by the monitoring of these urine samples. Internal radiation exposure at PHWRs accounts for approximately 20 $\sim$ 40% of total radiation exposure; most internal radiation exposure is attributed to tritium. Carbon-14 is not a dominant nuclide in the radiation exposure of workers, but it is one potential nuclide to be necessarily monitored. Carbon-14 is a low energy beta emitter and passes relatively easily into the body of workers by inhalation because its dominant chemical form is radioactive carbon dioxide ($^{14}CO_2$). Most inhaled carbon-14 is rapidly exhaled from the worker's body, but a small amount of carbon-14 remains inside the body and is excreted by urine. In this study, a method for dual analysis of tritium and carbon-14 in urine samples of workers at nuclear power plants is developed and a method for internal dose assessment using its excretion rate result is established. As a result of the developed dual analysis of tritium and carbon-14 in urine samples of radiation workers who entered the high radiation field area at a PHWR, it was found that internal exposure to carbon-14 is unlikely to occur. In addition, through the urine counting results of radiation workers who participated in the open process of steam generators, it was found that the likelihood of internal exposure to either tritium or carbon-14 is extremely low at pressurized water reactors (PWRs).

Analysis of the Likelihood of Internal Radiation Exposure When Decommissioning a Nuclear Power Plant in Korea

  • Jiung Kim;Tae Young Kong;Seongjun Kim;Jinho Son;Changju Song;Jaeok Park;Seungho Jo;Hee Geun Kim
    • Journal of Radiation Industry
    • /
    • v.18 no.2
    • /
    • pp.141-145
    • /
    • 2024
  • In Publication No. 66 of the International Commission on Radiological Protection, an activity median aerodynamic diameter (AMAD) of 5 ㎛ is considered in internal exposure dose assessment owing to inhalation of radionuclides in a workplace. However, analysis of aerosols generated during dismantling experiments, such as in the oxy-cutting of a reactor vessel conducted in Korea, revealed that the radioactive aerosols have AMAD ranging from 0.024 to 0.064 ㎛. Such extremely fine aerosols can induce internal exposure if inhaled. In particular, alpha radionuclides in aerosols can lead to significantly higher levels of radiation exposure than beta and gamma radionuclides, thus highlighting the need to establish appropriate internal exposure radiation protection programs and monitoring systems that specifically address alpha radionuclides when decommissioning nuclear power plants in Korea.

Evaluation Internal Radiation Dose of Pediatric Patients during Medicine Tests Using Monte Carlo Simulation (몬테칼로 시뮬레이션을 이용한 소아 핵의학검사 시 인체내부 장기선량 평가)

  • Lee, Dong-yeon;Kang, Yeong-rok
    • Journal of radiological science and technology
    • /
    • v.44 no.2
    • /
    • pp.109-115
    • /
    • 2021
  • In this study, a physical evaluation of internal radiation exposure in children was conducted using nuclear medicine test(Renal DTPA Dynamic Study) to simulate the distribution and effects of the radiation throughout the tracer kinetics over time. Monte Carlo simulations were performed to determine the internal medical radiation exposure during the tests and to provide basic data for medical radiation exposure management. Specifically, dose variability based on changes in the tracer kinetic was simulated over time. The internal exposure to the target organ (kidney) and other surrounding organs was then quantitatively evaluated and presented. When kidney function was normal, the dose to the target organ(kidney) was approximately 0.433 mGy/mCi, and the dose to the surrounding organs was approximately 0.138-0.266 mGy/mCi. When kidney function was abnormal, the dose to the surrounding organs was 0.228-0.419 mGy/mCi. This study achieved detailed radiation dose measurements in highly sensitive pediatric patients and enabled the prediction of radiation doses according to kidney function values. The proposed method can provide useful insights for medical radiation exposure management, which is particularly important and necessary for pediatric patients.

Analysis of Tritium Concentration in Working Environment and Internal Exposure Dose Assessment for Radiation Workers (방사성 부품 작업환경의 삼중수소 농도 분석 및 작업종사자 내부피폭선량 평가)

  • Gyoungjun Choi;Changwoo Kang
    • Journal of Radiation Industry
    • /
    • v.17 no.2
    • /
    • pp.135-141
    • /
    • 2023
  • Tritium is used in various types of parts such as luminous bodies. These parts are maintained for inspection and replacement at a facility licensed to use radioactive isotopes. This study analyzed the concentration of tritium in working facilities to supplement and develop the safety management system for the maintenance environment of parts containing tritium. In addition, the internal exposure dose was evaluated to analyze the effects of leaked tritium when continuously exposed to workers. As a result of evaluating the internal exposure dose for workers for 30 days, the maximum was 9.70 μSv and the average was 1.45 μSv. Based on the results of this study, the internal radiation exposure safety of workers handling parts containing tritium was confirmed, and additional protective measures to prevent unnecessary exposure to tritium were suggested. This study is expected to contribute to supplementing and developing the radiation safety management system.

Verification of Harmonization of Dose Assessment Results According to Internal Exposure Scenarios

  • Kim, Bong-Gi;Ha, Wi-Ho;Kwon, Tae-Eun;Lee, Jun-Ho;Jung, Kyu-Hwan
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.4
    • /
    • pp.143-153
    • /
    • 2018
  • Background: The determination of the amount of radionuclides and internal dose for the worker who may have intake of radionuclides results in a variation due to uncertainty of measurement data and ingestion information. As a result of this, it is possible that for the same internal exposure scenario assessors could make considerably different estimation of internal dose. In order to reduce this difference, internal exposure scenarios for nuclear facilities were developed, and intercomparison were made to determine the harmonization of dose assessment results among the assessors. Materials and Methods: Seven cases on internal exposures incidents that have occurred or may occur were prepared by referring to the intercomparison excercise scenario that NRC and IAEA have carried out. Based on this, 16 nuclear facilities concerned with internal exposure in Korea were asked to evaluate the scenarios. Each result was statistically determined according to the harmonization discrimination criteria developed by IDEAS/IAEA. Results and Discussion: The results were evaluated as having no outliers in all 7 cases. However, the distribution of the results was spread by various causes. They can be divided into two wide categories. The first one is the distribution of the results according to the assumption of the intake factors and the evaluation factors. The second one is distribution due to misapplication of calculation method and factors related to internal exposure. Conclusion: In order to satisfy the harmonization criteria and accuracy of the internal exposure dose evaluation, it is necessary that exact guidelines should be set on low dose, and various intercomparison cases also be needed including high dose exposure as well as the specialized education. The aim of the blind test is to make harmonization evaluation, but it will also contribute to securing the expertise and high quality of dose evaluation data through the discussion among the participants.

Optimization of In-vivo Monitoring Program for Radiation Emergency Response

  • Ha, Wi-Ho;Kim, Jong Kyung
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.333-338
    • /
    • 2016
  • Background: In case of radiation emergencies, internal exposure monitoring for the members of public will be required to confirm internal contamination of each individual. In-vivo monitoring technique using portable gamma spectrometer can be easily applied for internal exposure monitoring in the vicinity of the on-site area. Materials and Methods: In this study, minimum detectable doses (MDDs) for $^{134}Cs$, $^{137}Cs$, and $^{131}I$ were calculated adjusting minimum detectable activities (MDAs) from 50 to 1,000 Bq to find out the optimal in-vivo counting condition. DCAL software was used to derive retention fraction of Cs and I isotopes in the whole body and thyroid, respectively. A minimum detect-able level was determined to set committed effective dose of 0.1 mSv for emergency response. Results and Discussion: We found that MDDs at each MDA increased along with the elapsed time. 1,000 Bq for $^{134}Cs$ and $^{137}Cs$, and 100 Bq for $^{131}I$ were suggested as optimal MDAs to provide in-vivo monitoring service in case of radiation emergencies. Conclusion: In-vivo monitoring program for emergency response should be designed to achieve the optimal MDA suggested from the present work. We expect that a reduction of counting time compared with routine monitoring program can achieve the high throughput system in case of radiation emergencies.

Study on Radioprotective Effects of Bujeongsaengjintang (부정생진탕(扶正生津湯)이 방사선(放射線) 조사(照射) 부작용(副作用)에 미치는 영향(影響))

  • Kim, Jong-Dae;Cho, Chong-Kwan
    • The Journal of Internal Korean Medicine
    • /
    • v.19 no.2
    • /
    • pp.125-138
    • /
    • 1998
  • To evaluate the radioprotective effects of Bujeongsaengjintang studies were done experimentally. The results were obtained as follows: 1. WBC, Platelet and RBC were significantly increased in Bujeongsaengjintang treated group as compared with control group after exposure to radiation by Liniac. 2. By FACS analysis of splenic leukocyte after exposure to radiation by Liniac, T cell, T-helper cell and macrophase were significantly increased in Bujeongsaengjintang treated group. 3. In histological changes of ileum and jejunum of Balb/C mice after exposure to radiation by Liniac, exclusion and fusion of villi were decreased in Bujeongsaengjintang treated group as compared with control group. From above results, it is suggested that Bujeongsaengjintang is available to a clinic for the protection from damage by radiotherapy to cancer.

  • PDF

Simulation of Counting Efficiencies of Portable NaI Detector for Rapid Screening of Internal Exposure in Radiation Emergencies (방사선비상시 내부피폭 신속 분류를 위한 휴대용 NaI 검출기의 계측효율 전산모사)

  • Ha, Wi-Ho;Yoo, Jaeryong;Yoon, Seokwon;Pak, Min Jung;Kim, Jong Kyoung
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.4
    • /
    • pp.211-215
    • /
    • 2015
  • In case of radiation emergencies, radioactive materials released into environments can cause internal exposure of members of the public. Even though whole body counters are widely used for direct measurement of internally deposited radionuclides, those are not likely to be used at the field to rapidly screen internal exposure. In this study, we estimated the counting efficiencies of portable NaI detector for different size BOMAB phantoms using Monte Carlo transport code to apply handheld gamma spectrometers for rapid screening of internal exposure following radiological accidents. As a result of comparison for two counting geometries, counting efficiencies for sitting model were about 1.1 times higher than those for standing model. We found, however, that differences of counting efficiencies according to different size are higher than those according to counting geometry. Therefore, we concluded that when we assess internal exposure of small size people compared to the reference male, the body size should be considered to estimate more accurate radioactivity in the human body because counting efficiencies of 4-year old BOMAB phantom were about 2.4~3.1 times higher than those of reference male BOMAB phantom.

Opportunistic investigation of vascular calcification using 3-dimensional dental imaging

  • Masoud MiriMoghaddam;Hollis Lai;Camila Pacheco-Pereira
    • Imaging Science in Dentistry
    • /
    • v.54 no.3
    • /
    • pp.283-288
    • /
    • 2024
  • Purpose: Given the growing use of cone-beam computed tomography (CBCT) scans, this study assessed radiation exposure from these scans in the context of national guidelines and recommended dose limits. Materials and Methods: The current literature was reviewed to quantify the benefit of opportunistic diagnosis of carotid artery calcification relative to the potential risk of radiation-induced cancer. Results: The average radiation from CBCT at its largest field of view and highest resolution possible amounts to a reasonable but still low ionizing radiation exposure. This exposure is comparable to 22 days of background radiation and is notably lower than the radiation exposure from medical CT scans. According to the risk assessment analysis, the risk of stroke events involving internal and external carotid artery calcification (CAC) was 202 and 67 per 100,000 individuals, respectively. In contrast, the estimated risk of radiation-induced cancer associated with CBCT was notably lower, at 0.6 per 100,000. Conclusion: The present study advocates for a comprehensive assessment of CBCT scans encompassing the areas of the internal and external carotid arteries by a knowledgeable professional, given the potential advantages of early detection of vascular abnormalities. Dental professionals who take scans involving these areas need to be mindful of reporting these findings and refer patients to their primary care physician for further investigation.

Are Medical Personnel Safe from Radiation Exposure from Patient Receiving Radioiodine Ablation Therapy? (갑상선 암의 방사성요오드 치료 시 의료진은 방사선 피폭으로부터 안전한가?)

  • Kim, Chang-Guhn;Kim, Dae-Weung
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.4
    • /
    • pp.259-279
    • /
    • 2009
  • Radioiodine ablation therapy has been considered to be a standard treatment for patient with differentiated thyroid cancer after total thyroidectomy. Patients may need to be hospitalized to reduce radiation exposure of other people and relatives from radioactive patients receiving radioiodine therapy. Medical staffs, nursing staffs and technologists sometimes hesitate to contact patients in radioiodine therapy ward. The purpose of this paper is to introduce radiation dosimetry, estimate radiation dose from patients and emphasize the safety of radiation exposure from patients treated with high dose radioiodine in therapy ward. The major component of radiation dose from patient is external exposure. However external radiation dose from these patients treated with typical therapeutic dose of 4 to 8 GBq have a very low risk of cancer induction compared with other various risks occurring in daily life. The typical annual radiation dose without shielding received by patient is estimated to be 5 to 10 mSv, which is comparable with 100 to 200 times effective dose received by chest PA examination. Therefore, when we should keep in mind the general principle of radiation protection, the risks of radiation exposure from patients are low and the medical personnel are considered to be safe from radiation exposure.