• Title/Summary/Keyword: intermediate input

Search Result 234, Processing Time 0.022 seconds

Analysis of Seasonal Morphodynamic Patterns using Delft3D in Anmok Coast (수치모델링을 통한 안목해안에서 계절에 따른 지형변동 패턴 분석)

  • Kim, Mujong;Son, Donghwi;Yoo, Jeseon
    • Journal of Coastal Disaster Prevention
    • /
    • v.5 no.4
    • /
    • pp.183-192
    • /
    • 2018
  • In recent years, coastal areas have been suffering from coastal erosion, such as destruction of coastal roads and military facilities. In this study, the Delft3D model was used to analyze the sediment transport pattern due to seasonal characteristics of summer and winter waves in Anmok beach of the East coast. Typhoon and high waves are mainly are coming from ENE direction in the summer season and the flows occur in the northward. In winter, high waves are incident from NE and the flows occur in the southward. These seasonal patterns were simulated by using Delft3D model. As for model input, reanalysis wave data of the past 38 years were used, and the seasonal patterns were analyzed by dividing the whole year into summer and winter season. The grid point of the 38 year reanalysis data is far from the Anmok beach, so the three model grid systems (wide grid -> intermediate grid -> detailed grid) are constructed. Most of the flows in the NW direction occurred in summer, but erosion and deposition was alternated along the coastline. In winter, sediment was deposited near Gangnung Port due to the southern flow and the southern port. Strong winter waves compared to summer tend to cause deposition around Gangnung Port throughout the year.

The Analysis of Economic Impact for Fourth Industrial Revolution Industry using Demand-driven Model (수요유도형 모형을 이용한 4차 산업혁명 산업의 경제적 파급효과 분석)

  • Jeong, Eun-Hee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.1
    • /
    • pp.70-77
    • /
    • 2021
  • This paper was reclassified industries related to the 4th industrial revolution into manufacturing, information and communication services, finance and insurance services, and science and technology services by comparing the industry association table with the Korean standard industry classification. And the economic ripple effect was analyzed by exogenizing the four sectors of the industry using a demand-driven model. The wholesale and retail and product brokerage services were measured to be large in the manufacturing, information communication services, and science technology service sector according as a result of analysis of the production inducement effect, added value inducement effect, and employment inducement effect. And the financial and insurance services were analyzed to be large in the financial and insurance services sector. The import inducement effect was analyzed to be the largest in all sectors of the fourth industry. As a result of the forward and backward linkage effect, it was confirmed that the manufacturing and the information communication services sector were the intermediate primary production type sensitive to economic fluctuations. Also it was confirmed that the financial and insurance services and the science technology services sector were the final primary production type.

MLP-A(Multi Link Protection for Airborne Network Verifying) algorithms and implementation in multiple air mobile/verification links (다중 공중 이동/검증 링크에서의 MLP-A 알고리즘 및 구현)

  • Youn, Jong-Taek;Jeong, Hyung-jin;Kim, Yongi;Jeon, Joon-Seok;Park, Juman;Joo, Taehwan;Go, Minsun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.422-429
    • /
    • 2022
  • In this paper, the intermediate frequency transmission signal level between the network system-based baseband and RF unit consisting of multi-channel airborne relay devices and a lot of mission devices, which are currently undergoing technology development tasks, is kept constant at the reference signal level. Considering the other party's receiving input range, despite changes in the short-range long-range wireless communication environment, it presents a multi-link protection and MLP-A algorithm that allows signals to be transmitted stably and reliably through signal detection automatic gain control, and experiments and analysis considering short-distance and long-distance wireless environments were performed by designing, manufacturing, and implementing RF units to which MLP-A algorithms were applied, and applying distance calculation equations to the configuration of multiple air movements and verification networks. Through this, it was confirmed that a stable and reliable RF communication system can be operated.

Dual Attention Based Image Pyramid Network for Object Detection

  • Dong, Xiang;Li, Feng;Bai, Huihui;Zhao, Yao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4439-4455
    • /
    • 2021
  • Compared with two-stage object detection algorithms, one-stage algorithms provide a better trade-off between real-time performance and accuracy. However, these methods treat the intermediate features equally, which lacks the flexibility to emphasize meaningful information for classification and location. Besides, they ignore the interaction of contextual information from different scales, which is important for medium and small objects detection. To tackle these problems, we propose an image pyramid network based on dual attention mechanism (DAIPNet), which builds an image pyramid to enrich the spatial information while emphasizing multi-scale informative features based on dual attention mechanisms for one-stage object detection. Our framework utilizes a pre-trained backbone as standard detection network, where the designed image pyramid network (IPN) is used as auxiliary network to provide complementary information. Here, the dual attention mechanism is composed of the adaptive feature fusion module (AFFM) and the progressive attention fusion module (PAFM). AFFM is designed to automatically pay attention to the feature maps with different importance from the backbone and auxiliary network, while PAFM is utilized to adaptively learn the channel attentive information in the context transfer process. Furthermore, in the IPN, we build an image pyramid to extract scale-wise features from downsampled images of different scales, where the features are further fused at different states to enrich scale-wise information and learn more comprehensive feature representations. Experimental results are shown on MS COCO dataset. Our proposed detector with a 300 × 300 input achieves superior performance of 32.6% mAP on the MS COCO test-dev compared with state-of-the-art methods.

A Study on Object Recognition Technique based on Artificial Intelligence (인공지능 기반 객체인식 기법에 관한 연구)

  • Yang Hwan Seok
    • Convergence Security Journal
    • /
    • v.22 no.5
    • /
    • pp.3-9
    • /
    • 2022
  • Recently, in order to build a cyber physical system(CPS) that is a technology related to the 4th industry, the construction of the virtual control system for physical model and control circuit simulation is increasingly required in various industries. It takes a lot of time and money to convert documents that are not electronically documented through direct input. For this, it is very important to digitize a large number of drawings that have already been printed through object recognition using artificial intelligence. In this paper, in order to accurately recognize objects in drawings and to utilize them in various applications, a recognition technique using artificial intelligence by analyzing the characteristics of objects in drawing was proposed. In order to improve the performance of object recognition, each object was recognized and then an intermediate file storing the information was created. And the recognition rate of the next recognition target was improved by deleting the recognition result from the drawing. In addition, the recognition result was stored as a standardized format document so that it could be utilized in various fields of the control system. The excellent performance of the technique proposed in this paper was confirmed through the experiments.

A study on the active sonar reverberation suppression method based on non-negative matrix factorization with beta-divergence function (베타-발산 함수를 활용한 비음수 행렬 분해 기반의 능동 소나 잔향 제거 기법에 대한 연구)

  • Seokjin Lee;Geunhwan Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.4
    • /
    • pp.369-382
    • /
    • 2024
  • To suppress the reverberation in the active sonar system, the non-negative matrix factorization-based reverberation suppression methods have been researched recently. An estimation loss function, which makes the multiplication of basis matrices same as the input signals, has to be considered to design the non-negative matrix factorization methods, but the conventional method simply chooses the Kullback-Leibler divergence asthe lossfunction without any considerations. In this paper, we examined that the Kullback-Leibler divergence is the best lossfunction or there isthe other loss function enhancing the performance. First, we derived a modified reverberation suppression algorithm using the generalized beta-divergence function, which includes the Kullback-Leibler divergence. Then, we performed Monte-Carlo simulations using synthesized reverberation for the modified reverberation suppression method. The results showed that the Kullback-Leibler divergence function (β = 1) has good performances in the high signal-to-reverberation environments, but the intermediate function (β = 1.25) between Kullback-Leibler divergence and Euclidean distance has better performance in the low signal-to-reverberation environments.

Study on load tracking characteristics of closed Brayton conversion liquid metal cooled space nuclear power system

  • Li Ge;Huaqi Li;Jianqiang Shan
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1584-1602
    • /
    • 2024
  • It is vital to output the required electrical power following various task requirements when the space reactor power supply is operating in orbit. The dynamic performance of the closed Brayton cycle thermoelectric conversion system is initially studied and analyzed. Based on this, a load tracking power regulation method is developed for the liquid metal cooled space reactor power system, which takes into account the inlet temperature of the lithium on the hot side of the intermediate heat exchanger, the filling quantity of helium and xenon, and the input amount of the heat pipe radiator module. After comparing several methods, a power regulation method with fast response speed and strong system stability is obtained. Under various changes in power output, the dynamic response characteristics of the ultra-small liquid metal lithium-cooled space reactor concept scheme are analyzed. The transient operation process of 70 % load power shows that core power variation is within 30 % and core coolant temperature can operate at the set safety temperature. The second loop's helium-xenon working fluid has a 65K temperature change range and a 25 % filling quantity. The lithium at the radiator loop outlet changes by less than ±7 K, and the system's main key parameters change as expected, indicating safety. The core system uses less power during 30 % load power transient operation. According to the response characteristics of various system parameters, under low power operation conditions, the lithium working fluid temperature of the radiator circuit and the high-temperature heat pipe operation temperature are limiting conditions for low-power operation, and multiple system parameters must be coordinated to ensure that the radiator system does not condense the lithium working fluid and the heat pipe.

Structural Decomposition Analysis for Energy Consumption of Industrial Sector with Linked Energy Input-Output Table 00-05-08 (접속불변에너지산업연관표 00-05-08을 이용한 산업별 에너지소비 변화량의 구조분해분석)

  • Kim, Yoon Kyung;Jang, Woon Jeong
    • Environmental and Resource Economics Review
    • /
    • v.20 no.2
    • /
    • pp.255-289
    • /
    • 2011
  • This study made linked Energy IO Table 00-05-08 of 76 sectors in intermediate sectors and analyzed structural decomposition analysis in energy consumption change in industrial sector with both by aggregate data and micro data. Structural decomposition analysis focused value added level change, value added share change of each industry, output structural change of each industry and energy intensity change of each industry as factors. Supply side model based on Ghosh inverse matrix was applied as empirical model because Korea has export driven industrial structure. Empirical results with aggregate data showed that value added change increased energy consumption and output structural change of each industry decreased energy consumption in both 2000~2005 and 2005~2008. However value added share change and energy intensity change caused opposite direction in energy consumption change with time. Policy based on aggregate data can not evaluate effort of each industry in energy efficiency and make effective results because aggregate data delete character of each industry.

  • PDF

Development of hydro-mechanical-damage coupled model for low to intermediate radioactive waste disposal concrete silos (방사성폐기물 처분 사일로의 손상연동 수리-역학 복합거동 해석모델 개발)

  • Ji-Won Kim;Chang-Ho Hong;Jin-Seop Kim;Sinhang Kang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.3
    • /
    • pp.191-208
    • /
    • 2024
  • In this study, a hydro-mechanical-damage coupled analysis model was developed to evaluate the structural safety of radioactive waste disposal structures. The Mazars damage model, widely used to model the fracture behavior of brittle materials such as rocks or concrete, was coupled with conventional hydro-mechanical analysis and the developed model was verified via theoretical solutions from literature. To derive the numerical input values for damage-coupled analysis, uniaxial compressive strength and Brazilian tensile strength tests were performed on concrete samples made using the mix ratio of the disposal concrete silo cured under dry and saturated conditions. The input factors derived from the laboratory-scale experiments were applied to a two-dimensional finite element model of the concrete silos at the Wolseong Nuclear Environmental Management Center in Gyeongju and numerical analysis was conducted to analyze the effects of damage consideration, analysis technique, and waste loading conditions. The hydro-mechanical-damage coupled model developed in this study will be applied to the long-term behavior and stability analysis of deep geological repositories for high-level radioactive waste disposal.

Summer Hydrographic Features of the East Sea Analyzed by the Optimum Multiparameter Method (OMP 방법으로 분석한 하계 동해의 수계 특성)

  • Kim, Il-Nam;Lee, Tong-Sup
    • Ocean and Polar Research
    • /
    • v.26 no.4
    • /
    • pp.581-594
    • /
    • 2004
  • CREAHS II carried out an intensive hydrographic survey covering almost entire East Sea in 1999. Hydrographic data from total 203 stations were released to public on the internee. This paper summarized the results of water mass analysis by OHP (Optimum Multiparameter) method that utilizes temperature, salinity, dissolved oxygen, pH, alkalinity, silicate, nitrate, phosphate and location data as an input data-matrix. A total of eight source water types are identified in the East Sea: four in surface waters(North Korea Surface Water, Tatar Surface Cold Water, East Korean Coastal Water, Modified Tsushima Surface Water), two intermediate water types (Tsushima Middle Water, Liman Cold Water), two deep water types (East Sea Intermediate Water, East Sea Proper Water). Of these NKSW, MTSW and TSCW are the newly reported as the source water type. Distribution of each water types reveals several few interesting hydrographic features. A few noteworthy are summarized as follows: The Tsushima Warm Current enter the East Sea as three branches; East Korea Coastal Water propagates north along the coast around $38^{\circ}N$ then turns to northeastward to $42^{\circ}N$ and moves eastward. Cold waters of northern origin move southward along the coast at the subsurface, which existence the existence of a circulation cell at the intermediate depth of the East Sea. The estimated volume of each water types inferred from the OMP results show that the deep waters (ESIW + ESPW) fill up ca. 90% of the East Sea basins. Consequently the formation and circulation of deep waters are the key factors controlling environmental condition of the East Sea.