• 제목/요약/키워드: interior beam-column joints

검색결과 51건 처리시간 0.022초

Interaction of internal forces of interior beam-column joints of reinforced concrete frames under seismic action

  • Zhou, Hua;Zhang, Jiangli
    • Structural Engineering and Mechanics
    • /
    • 제52권2호
    • /
    • pp.427-443
    • /
    • 2014
  • This paper presents detailed analysis of the internal forces of interior beam-column joints of reinforced concrete (RC) frames under seismic action, identifies critical joint sections, proposes consistent definitions of average joint shear stress and average joint shear strain, derives formulas for calculating average joint shear and joint torque, and reports simplified analysis of the effects of joint shear and torque on the flexural strengths of critical joint sections. Numerical results of internal joint forces and flexural strengths of critical joint sections are presented for a pair of concentric and eccentric interior connections extracted from a seismically designed RC frame. The results indicate that effects of joint shear and torque may reduce the column-to-beam flexural strength ratios to below unity and lead to "joint-yielding mechanism" for seismically designed interior connections. The information presented in this paper aims to provide some new insight into the seismic behavior of interior beam-column joints and form a preliminary basis for analyzing the complicated interaction of internal joint forces.

철골보와 철근콘크리트기둥으로 구성된 내부 접합부의 극한전단강도 산정에 관한 연구 (A Study on the Ultimate Shear Strength Estimation of the Interior Joints of Steel Beam and Reinforced Concrete Column)

  • 문상훈;안재혁;박천석
    • 한국안전학회지
    • /
    • 제21권2호
    • /
    • pp.57-62
    • /
    • 2006
  • Recent trends in the construction of building frame feature the use of composite steel concrete members. One of such system, RCS(Reinforced Concrete column and Steel beam) system, is known as a type of system to maximize the structural and economic benefits in the most efficient manner. This paper is focusing on an study of ultimate shear strength estimation of the interior beam-column joints of RCS system, with reinforced concrete column and steel beam. Current design methods as well as the majority of the previous researches for ultimate shear strength of the interior beam-column joint of RCS system are not easy to apply actual manner. There is a need to propose the rational macro models based on analytical approach. In this study, design method variables for interior beam-column joints of RCS system is studied assuming shear resistance of steel web panel, diagonal concrete strut mechanism and truss mechanism. Finally, calculated results based on the proposed design model are compared with test data.

Key factors affecting the shear behaviour of exterior RC beam-column joints

  • Ricardo, Costa;Paulo, Providencia
    • Structural Engineering and Mechanics
    • /
    • 제85권3호
    • /
    • pp.353-367
    • /
    • 2023
  • An extended parametric study based on nonlinear finite element analyses is performed to assess the key factors affecting the shear behaviour of exterior beam-column joints of unbraced reinforced concrete frames. Extensive results are presented, the major conclusion being that the few shear behaviour models for exterior reinforced concrete beam-column joints available in the literature do not properly account for some of the most influential factors. The present results are also compared with recently published results for interior joints, showing that while some factors have a similar influence on interior and exterior joints others are relevant for only one of these types of joints. This also confirms, numerically, that some resisting mechanisms of exterior joints differ from those of interior joints.

깊은보-내부기둥 접합부의 비선형해석을 위한 전산플랫폼 (A Computational Platform for Nonlinear Analysis of Deep Beam-and-Interior Column Joints)

  • 김태훈;고동우;이한선;신현목
    • 한국전산구조공학회논문집
    • /
    • 제24권2호
    • /
    • pp.201-210
    • /
    • 2011
  • 이 연구에서는 깊은보-내부기둥 접합부의 내진성능평가를 위한 비선형 유한요소해석 기법을 제시하였다. 사용된 프로그램은 철근콘크리트 구조물의 해석을 위한 RCAHEST이다. 깊은보-내부기둥 접합부의 강도, 연성도 등 거동특성을 파악하기 위한 반복횡하중 실험을 수행하였다. 실험의 변수로는 축력과 횡방향 철근량을 정하였다. 이 연구에서는 깊은보-내부기둥 접합부의 내진성능평가를 위해 제안한 해석기법을 신뢰성 있는 실험결과와 비교하여 그 타당성을 검증하였다.

Behavior of SFRC interior beam-column joints under cyclic loading

  • Khalaf, Noor Ayaad;Qissab, Musab Aied
    • Structural Monitoring and Maintenance
    • /
    • 제7권3호
    • /
    • pp.167-193
    • /
    • 2020
  • In this paper, the behavior of interior steel fiber reinforced concrete beam - column joints (BCJs) under cyclic loading is investigated. An experimental program including tests on twelve reinforced concrete (BCJs) specimens under cyclic loading was carried out. The test specimens are divided into two groups having different geometry: group (G1) (symmetrical BCJs specimens) and group (G2) (nonsymmetrical BCJs specimens). The parameters considered in this study are the steel fibers (SFs) content by volume of concrete (Vf), the spacing of shear reinforcement at the joint region, and the area of longitudinal flexural reinforcement. Test results show that the addition of 0.5% SFs with stirrups spacing S=Smax has effectively enhanced the overall performance of BCJs with respect to energy dissipation, ductility ratio, spreading and width of cracks. The failure of specimens is governed mainly by the formation of a plastic hinge at the face column and outside the beam-column junction. Secondary shear cracks were also observed in the beam-column junctions.

슬래브가 있는 넓은 보-기둥 접합부의 전단거동 (Shear Behavior of Wide Beam-Column Joints with Slab)

  • 안종문;최종인;신성우;이범식;박성식;양지수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.157-162
    • /
    • 2003
  • An experimental investigation was conducted to study the behavior of high-strength RC wide beam-column joints with slab subjected to reversed cyclic loads under constant axial load. Six half scale interior wide beam-column assemblies representing a portion of a frame subjected to simulated seismic loading were tested, including three specimens without slab and three specimens with slab. The primary variables were compressive strength of concrete($f_ck$=285, 460kgf/$cm^2$), the ratio of the column-to-beam flexural capacity($M_r$=$\Sigma M_c / \Sigma M_b$ ; 0.77 -2.26), extended length of the column concrete($l_d$ ; 0, 12.5, 30cm), ratio of the column-to-beam width(b/H ; 1.54, 1.67). Test results are shown that (1) the behavior of specimen using high-strength concrete satisfied for required minimum ductile capacity according to increase the compressive strength, (2) the current design code and practice for interior joints(type 2) are apply to the wide beam-high strength concrete column.

  • PDF

External retrofit of beam-column joints in old fashioned RC structures

  • Adibi, Mahdi;Marefat, Mohammad S.;Arani, Kamyar Karbasi;Zare, Hamid
    • Earthquakes and Structures
    • /
    • 제12권2호
    • /
    • pp.237-250
    • /
    • 2017
  • There has been increasing attention in many countries on seismic retrofit of old fashioned RC structures in recent years. In such buildings, the joints lack transverse reinforcement and suffer inadequate seismic dimensional requirements and the reinforcement is plain bar. The behavior of the joints is governed by sliding of steel bars and diagonal shear failure is less influential. Different methods to retrofit beam-column joints have been proposed in the literature such as wrapping the joint by FRP sheets, enlargement of the beam-column joint, and strengthening the joint by steel sheets. In this study, an enlargement technique that uses external prestressed cross ties with steel angles is examined. The technique has already been used for substructures reinforced by deformed bars and has advantages such as efficient enhancement of seismic capacity and lack of damage to the joint. Three reference specimens and two retrofitted units are tested under increasing lateral cyclic load in combination with two levels of axial load. The reference specimens showed relatively low shear strength of 0.150${\surd}$($f_c$) and 0.30${\surd}$($f_c$) for the exterior and interior joints, respectively. In addition, relatively brittle behavior was observed and large deformations extended into the panel zone of the joints. The retrofit method has increased ductility ratio of the interior beam-column joints by 63%, and energy dissipation capacity by 77%, relative to the control specimen; For external joints, these values were 11%, and 94%. The retrofit method has successfully relocated the plastic joints far from the column face. The retrofit method has improved shear strength of the joints by less than 10%.

Nonlinear modeling of beam-column joints in forensic analysis of concrete buildings

  • Nirmala Suwal;Serhan Guner
    • Computers and Concrete
    • /
    • 제31권5호
    • /
    • pp.419-432
    • /
    • 2023
  • Beam-column joints are a critical component of reinforced concrete frame structures. They are responsible for transferring forces between adjoining beams and columns while limiting story drifts and maintaining structural integrity. During severe loading, beam-column joints deform significantly, affecting, and sometimes governing, the overall response of frame structures. While most failure modes for beam and column elements are commonly considered in plastic-hinge-based global frame analyses, the beam-column joint failure modes, such as concrete shear and reinforcement bond slip, are frequently omitted. One reason for this is the dearth of published guidance on what type of hinges to use, how to derive the joint hinge properties, and where to place these hinges. Many beam-column joint models are available in literature but their adoption by practicing structural engineers has been limited due to their complex nature and lack of practical application tools. The objective of this study is to provide a comparative review of the available beam-column joint models and present a practical joint modeling approach for integration into commonly used global frame analysis software. The presented modeling approach uses rotational spring models and is capable of modeling both interior and exterior joints with or without transverse reinforcement. A spreadsheet tool is also developed to execute the mathematical calculations and derive the shear stress-strain and moment-rotation curves ready for inputting into the global frame analysis. The application of the approach is presented by modeling a beam column joint specimen which was tested experimentally. Important modeling considerations are also presented to assist practitioners in properly modeling beam-column joints in frame analyses.

Effect of geometrical configuration on seismic behavior of GFRP-RC beam-column joints

  • Ghomia, Shervin K.;El-Salakawy, Ehab
    • Advances in concrete construction
    • /
    • 제9권3호
    • /
    • pp.313-326
    • /
    • 2020
  • Glass fiber-reinforced polymer (GFRP) bars have been introduced as an effective alternative for the conventional steel reinforcement in concrete structures to mitigate the costly consequences of steel corrosion. However, despite the superior performance of these composite materials in terms of corrosion, the effect of replacing steel reinforcement with GFRP on the seismic performance of concrete structures is not fully covered yet. To address some of the key parameters in the seismic behavior of GFRP-reinforced concrete (RC) structures, two full-scale beam-column joints reinforced with GFRP bars and stirrups were constructed and tested under two phases of loading, each simulating a severe ground motion. The objective was to investigate the effect of damage due to earthquakes on the service and ultimate behavior of GFRP-RC moment-resisting frames. The main parameters under investigation were geometrical configuration (interior or exterior beam-column joint) and joint shear stress. The performance of the specimens was measured in terms of lateral load-drift response, energy dissipation, mode of failure and stress distribution. Moreover, the effect of concrete damage due to earthquake loading on the performance of beam-column joints under service loading was investigated and a modified damage index was proposed to quantify the magnitude of damage in GFRP-RC beam-column joints under dynamic loading. Test results indicated that the geometrical configuration significantly affects the level of concrete damage and energy dissipation. Moreover, the level of residual damage in GFRP-RC beam-column joints after undergoing lateral displacements was related to reinforcement ratio of the main beams.

Finite element analysis of RC beam-column joints with high-strength materials

  • Noguchi, H.;Kashiwazaki, T.
    • Structural Engineering and Mechanics
    • /
    • 제5권5호
    • /
    • pp.625-634
    • /
    • 1997
  • Reinforced concrete (RC) interior beam-column joints with high-strength materials: concrete compressive strength of 100 MPa and the yield strength of longitudinal bars of 685 MPa, were analyzed using three-dimensional (3-D) nonlinear finite element method (FEM). Specimen OKJ3 of joint shear failure type was a plane interior joint, and Specimen 12 of beam flexural failure type was a 3-D interior joint with transverse beams. Though the analytical initial stiffness was higher than experimental one, the analytical results gave a good agreement with the test results on the maximum story shear forces, the failure mode.