DOI QR코드

DOI QR Code

Key factors affecting the shear behaviour of exterior RC beam-column joints

  • Received : 2020.09.03
  • Accepted : 2022.12.30
  • Published : 2023.02.10

Abstract

An extended parametric study based on nonlinear finite element analyses is performed to assess the key factors affecting the shear behaviour of exterior beam-column joints of unbraced reinforced concrete frames. Extensive results are presented, the major conclusion being that the few shear behaviour models for exterior reinforced concrete beam-column joints available in the literature do not properly account for some of the most influential factors. The present results are also compared with recently published results for interior joints, showing that while some factors have a similar influence on interior and exterior joints others are relevant for only one of these types of joints. This also confirms, numerically, that some resisting mechanisms of exterior joints differ from those of interior joints.

Keywords

Acknowledgement

This work is partially supported by the Portuguese Foundation for Science and Technology under project grants UIDB/00308/2020 and UID/ECI/04029/2013.

References

  1. Bindhu, K. and Jaya, K. (2008), "Performance of exterior beam column joints with cross-inclined bars under seismic type loading", J. Eng. Appl. Sci., 3(7), 591-597. 
  2. Birely, A.C., Lowes, L.N. and Lehman, D.E. (2012), "A model for the practical nonlinear analysis of reinforced-concrete frames including joint flexibility", Eng. Struct., 34, 455-465. https://doi.org/10.1016/j.engstruct.2011.09.003. 
  3. CEN (2004), EN 1992-1-1, Eurocode 2: Design of Concrete Structures-Part1-1: General Rules and Rules for Buildings, Brussels. 
  4. CEN (2004), EN 1998-1, Eurocode 8: Design of Structures for Earthquake Resistance-Part 1: General Rules, Seismic Actions and Rules for Buildings, 
  5. CEN (2005), EN 1998-3 Eurocode 8: Design of Structures for Earthquake Resistance-Part 3: Assessment and Retrofitting of Buildings, European Committee for Standardisation, Brussels.
  6. Cervenka Consulting (2009), ATENA 3D, Prague. 
  7. Costa, R. and Providencia, P. (2020), "Main factors determining the shear behavior of interior RC beam-column joints", Struct. Eng. Mech., 76(3), 337-354. https://doi.org/10.12989/sem.2020.76.3.337. 
  8. Costa, R., Providencia, P. and Dias, A. (2015), "Considering the size and strength of beam-column joints in the design of RC frames", Struct. Concrete, 16(2), 233-248. https://doi.org/10.1002/suco.201400054. 
  9. Costa, R., Providencia, P. and Dias, A. (2017), "Component based reinforced concrete beam-column joint model", Struct. Concrete, 18(1), 164-176. https://doi.org/10.1002/suco.201600024. 
  10. Costa, R., Providencia, P. and Ferreira, M. (2017), "Influence of joint modelling on the pushover analysis of a RC frame", Struct. Eng. Mech., 64(5), 641-652. https://doi.org/10.12989/sem.2017.64.5.641. 
  11. Costa, R., Providencia, P. and Gomes, F. (2016), "On the need for classification criteria of cast in situ rc beam-column joints according to their stiffness", Mater. Struct., 49(4), 1299-1317. https://doi.org/10.1617/s11527-015-0577-7. 
  12. Cotsovos, D.M. (2013), "Cracking of rc beam/column joints: Implications for the analysis of frame-type structures", Eng. Struct., 52, 131-139. https://doi.org/10.1016/j.engstruct.2013.02.018. 
  13. Ehsani, M.R. and Wight, J.K. (1985), "Exterior reinforced concrete beam-to-column connections subjected to earthquake-type loading", ACI J., 82(4), 492-499.  https://doi.org/10.14359/10361
  14. Eligehausen, R. and Pampanin, S. (2009). "3D analysis of seismic response of rc beam-column exterior joints before and after retrofit", Concrete Repair, Rehabilitation and Retrofitting II, Cape Town. 
  15. fib (2013), fib Model Code for Concrete Structures 2010, Ernst & Sohn. 
  16. Fujii, S. and Morita, S. (1991), "Comparison between interior and exterior rc beam-column joint behavior", Am. Concrete Inst. Spec. Publ., 123, 145-166. 
  17. Haach, V., Debs, A. and Debs, M. (2008), "Evaluation of the influence of the column axial load on the behavior of monotonically loaded R/C exterior beam-column joints through numerical simulations", Eng. Struct., 30, 965-975. https://doi.org/10.1016/j.engstruct.2007.06.005. 
  18. Hanson, N.W. and Conner, H.W. (1967), "Seismic resistance of reinforced concrete beam-column joints", J. Struct. Div., ASCE, 95(5), 533-560. https://doi.org/10.1061/JSDEAG.0001785. 
  19. Hegger, J., Sherif, A. and Roeser, W. (2004), "Nonlinear finite element analysis of reinforced concrete beam-column connections", ACI Struct. J., 101(5), 604-614.  https://doi.org/10.14359/13382
  20. Hwang, H.J. and Park, H.G. (2019), "Requirements of shear strength and hoops for performance-based design of interior beam-column joints", ACI Struct. J., 116(2), 245. 
  21. Hwang, S.J. and Lee, H.J. (1999), "Analytical model for predicting shear strengths of exterior reinforced concrete beam-column joints for seismic resistance", ACI Struct. J., 96(5), 846-857.  https://doi.org/10.14359/739
  22. Hwang, S.J. and Lee, H.J. (2000), "Analytical model for predicting shear strengths of interior reinforced concrete beam-column joints for seismic resistance", ACI Struct. J., 97(1), 35-44.  https://doi.org/10.14359/831
  23. Ibrahim, H.H.A. (2011), "Stud reinforcement in beam-column joints under seismic loads", Ph.D. Thesis, University of Calgary, Canada. 
  24. Kim, J. (2007), "Joint shear behaviour of reinforced concrete beam-column connections subjected to seismic lateral loading", Ph.D. Thesis, University of Illinois at Urbana-Champaign, Urbana, USA. 
  25. Kim, J., LaFave, J.M. and Song, J. (2009), "Joint shear behaviour of reinforced concrete beam-column connections", Mag. Concrete Res., 61(2), 119-132. https://doi.org/10.1680/macr.2008.00068. 
  26. Kotsovou, G. and Mouzakis, H. (2012), "Seismic design of rc external beam-column joints", Bull. Earthq. Eng., 10(2), 645-677. https://doi.org/10.1007/s10518-011-9303-1. 
  27. Kulkarni, S. and Li, B. (2008), "Seismic behaviour of reinforced concrete interior wide beam-column joints", J. Earthq. Eng., 13(1), 80-99. https://doi.org/10.1080/13632460802211941. 
  28. LaFave, J.M. and Kim, J.H. (2011), "Joint shear behavior prediction for rc beam-column connections", Int. J. Concrete Struct. Mater., 5(1), 57-64. https://doi.org/10.4334/IJCSM.2011.5.1.057. 
  29. Li, B. and Kulkarni, S. (2010), "Seismic behaviour of reinforced concrete exterior wide beam-column joints", J. Struct. Eng., 136(1), 26-36. https://doi.org/10.1061/(ASCE)0733-9445(2010)136:1(26). 
  30. Lowes, L., Mitra, N. and Altoontash, A. (2004), "A beam-column joint model for simulating the earthquake response of reinforced concrete frames", PEER, University of California 
  31. Lykidis, G. and Spiliopoulos, K. (2008), "3D solid finite-element analysis of cyclically loaded rc structures allowing embedded reinforcement slippage", J. Struct. Eng., ASCE, 134(4), 629-638.  https://doi.org/10.1061/(asce)0733-9445(2008)134:4(629)
  32. MC90 (1990), ceb-fip model code 1990-design code, Thomas Telford, London. 
  33. Megget, L.M. (1974), "Cyclic behavior of exterior reinforced concrete beam-column joints", Bull. NZ Nat. Soc. Earthq. Eng., 7(1), 27-47. https://doi.org/10.5459/bnzsee.7.1.27-47. 
  34. Mirzabagheri, S. and Tasnimi, A.A. (2019), "Evaluation of CSA and ACI shear strength factor for RC roof wide and conventional beam-column joints", Ingegneria Sismica-Int. J. Earthq. Eng., 2019(1), 26. 
  35. Mirzabagheri, S., Tasnimi, A.A. and Issa, F. (2018), "Experimental and numerical study of reinforced concrete interior wide beam-column joints subjected to lateral load", Can. J. Civil Eng., 45(11), 947-957. https://doi.org/10.1139/cjce-2018-0049. 
  36. Nilsson, I.H.E. and Losberg, A. (1976), "Reinforced concrete corners and joints subjected to bending moment", J. Struct. Eng., ASCE, 102(6), 1229-1254. https://doi.org/10.1061/JSDEAG.0004362. 
  37. Noguchi, H. (2006), "Three-dimensional fem analysis of rc beam-column joints subjected to two-directional loads", Spec. Publ., 237, 149-164. 
  38. Ortiz, R. (1993), "Strut and tie modelling of reinforced concrete short beams and beam-column joints", University of Westminster, UK. 
  39. Pantelides, C.P., Clyde, C. and Reaveley, L.D. (2002), "Performance-based evaluation of reinforced concrete building exterior joints for seismic excitation", Earthq. Spectra, 18(3), 449-480. https://doi.org/10.1193/1.1510447. 
  40. Park, S. and Mosalam, K.M. (2012), "Analytical model for predicting shear strength of unreinforced exterior beam-column joints", ACI Struct. J., 109(2), 149-160.  https://doi.org/10.14359/51683626
  41. Pauletta, M., Marco, C.D., Frappa, G., Miani, M., Campione, G. and Russo, G. (2021), "Seismic behavior of exterior RC beam-column joints without code-specified ties in the joint core", Eng. Struct., 228, 111542. https://doi.org/10.1016/j.engstruct.2020.111542. 
  42. Roeser, W. (2002), "Zum tragverhalten von Rahmenknoten aus Stahlbeton", Ph.D. Thesis, Lehrstuhl und Institut fur MassivBau, RWTH Aachen University, Germany. 
  43. Sagbas, G., Vecchio, F.J. and Christopoulos, C. (2011), "Computational modeling of the seismic performance of beam-column subassemblies", J. Earthq. Eng., 15(4), 640-663. https://doi.org/10.1080/13632469.2010.508963. 
  44. Scott, R.H. (1996), "Intrinsic mechanisms in reinforced concrete beam-column connection behavior", ACI Struct. J., 93(5), 336-346.  https://doi.org/10.14359/9693
  45. Shiohara, H. (2001), "New model for shear failure of rc interior beam-column connections", J. Struct. Eng., ASCE, 127(2), 153-160. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:2(152). 
  46. Tran, M.T. (2016), "Influence factors for the shear strength of exterior and interior reinforced concrete beam-column joints", Procedia Eng., 146, 63-70. https://doi.org/10.1016/j.proeng.2016.02.014. 
  47. Tran, T., Hadi, M. and Phan, T. (2014), "A new empirical model for shear strength of reinforced beam-column connections", Mag. Concrete Res., 66(10), 514-530. https://doi.org/10.1680/macr.13.00310. 
  48. Vella, J. and Vollum, R. (2017), "Numerical modelling of headed bar joints subjected to tension", Mag. Concrete Res., 69(10), 1027-1042. https://doi.org/10.1680/jmacr.17.00011.