• Title/Summary/Keyword: interference element

Search Result 288, Processing Time 0.024 seconds

Development of 6-component Load Cell Using Plate Beams (평판보를 이용한 6분력 로드셀 개발에 관한 연구)

  • 김갑순;이세헌;엄기원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.8
    • /
    • pp.109-115
    • /
    • 1998
  • This paper describes the development of a 6-component load cell with plate beams which may be used to measure forces Fx, Fy, Fz and moments Mx, My, Mz simultaneously in industry. We have analyzed the bending strains on the surface of the beams under forces or moments by using Finite Element Method and designed the sensing elements of 6-component load cell. We have also determined the attachment location of strain gages of each load cell and fabricated 6-component load cell. To evaluate the rated strain and interference error of each load cell, we have carried out characteristic test of 6-component load cell.

  • PDF

Design and Strain Analysis of Precision 3-component Load Cell (정밀 3분력(Fz, Fy, Mz) 로드셀의 설계 및 변형률해석)

  • Kim, Gab-Soon;Rhee, Se-Hun;Um, Ki-Woan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.222-232
    • /
    • 1999
  • This paper describes the development of a precision 3-component load cell with plate beams which may be used for measuring forces Fx, Fy and moment Mz simultaneously in industry. We have derived equations to predict the bending strains on the surface of the beams under forces or moment. We have also determined the attachment location of strain gages of each sensor and fabricated 3-component load cell. To evaluate the rated strain and interference error of each sensor, we have carried out characteristic test of precision 3-component load cell. It reveals that the rated strain calculated from the derived equations are good agreement with the results from Finite Element Method analysis.

  • PDF

Numerical Analysis of the Contact Stress Behaviour in Scraper Seals (스크레이퍼 시일의 접촉응력 거동에 관한 수치적 연구)

  • 나윤환;김청균;류병진;유인석
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.198-203
    • /
    • 1997
  • This paper deals with a numerical study of the tribological contact stress distributions of elastomeric lip seah for oscillating shafts when the sealing interference and band width between the lip edge of contact seals the shaft are present. Using the finite element method, the contact stress and band width of scraper seals rare analyzed for the sealing interference including some nonlinearities such as geometrical nonlinearity, material nonlinearity and nonlinear contact boundary condition. The FEM results showed that the contact stress concentrated on the contacting lip zone between the contacting edge of lip and the shaft for the increased interference. In double lip scraper seals, the maximum contact stress of the dust lip, which is used to exclude foreign contaminants, is six times higher than that of the primary sealing lip, which is used to contain lubricants.

  • PDF

A study on Contact force of Rubber Seal for wheel bearing (휠베어링 고무 실의 접촉력에 관한 연구)

  • Choi No Jin;Hur Young Min;Lee Kwang O;Kang Sung Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.145-151
    • /
    • 2006
  • Wheel bearing unit has been exclusively applied to car wheel supporting device. The seal for wheel bearing is required to have both high sealing effects and low reaction forces because wheel bearing are operated on adverse environmental conditions such as mud and splash water. High sealing effects are for the protection of bearing ball wear from dust influx. In order to ensure high sealing effects, it is a easiest way to increase contact force which are affected by geometric characteristics, material properties and interferences between seal and inner bearing but induces higher wear phenomena. Interferences in all variables are most important factor to determine the performance of wheel bearing. In this study, optimization of interference amount was performed with finite element analysis with commercial code ABAQUS. For the sake of finite element analysis, tensile tests of rubber material were conducted and governing equation of nonlinear behavior was achieved. Hock-up bearing was manufactured with optimized interference amount. Results of torque and mud spray tests using this bearing unit are performed. Less torque and moisture influx of bearing with optimized interference amount is evidence to validity of this study.

Design of Tool Clamping Device Based on a Shape Memory Alloy (형상기억합금 기반 공구 클램핑 장치 설계)

  • Lee, Dong-Ju;Shin, Woo-Cheol;Park, Hyung-Wook;Ro, Seung-Kook;Park, Jong-Kweon;Chung, Jun-Mo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.70-75
    • /
    • 2008
  • This paper describes a tool-clamping/unclamping mechanism for application of a micro-spindle. The mechanism is based on one-way shape memory effect and interference-fit. The corresponding mathematical models and a few considerable design parameters are mentioned in this paper. Especially, necessary conditions for the clamping and unclamping operation are investigated through finite element analysis. The analysis results show that the differences between the diametral deformations of the tool holder in high temperature and that in low temperature are increased according to amounts of the interference. Thus the less interference between the tool-holder and the ring, the less tolerance to allow the clamping and unclamping operation because the inner diameter of the tool holder in high temperature should be smaller than the diameter of the tool shank, and that in low temperature should be larger than the diameter of the tool shank. In addition, the design for maximization of clamping force are investigated based on finite element analysis. The results show that the more amounts of the interference, the more clamping force. As the result, the interference should be considered as a important factor to maximize the tool clamping force.

Estimation of Phosphorus Concentration in Silicon Thin Film on Glass Using ToF-SIMS

  • Hossion, M. Abul;Murukesan, Karthick;Arora, Brij M.
    • Mass Spectrometry Letters
    • /
    • v.12 no.2
    • /
    • pp.47-52
    • /
    • 2021
  • Evaluating the impurity concentrations in semiconductor thin films using time of flight secondary ion mass spectrometry (ToF-SIMS) is an effective technique. The mass interference between isotopes and matrix element in data interpretation makes the process complex. In this study, we have investigated the doping concentration of phosphorus in, phosphorus doped silicon thin film on glass using ToF-SIMS in the dynamic mode of operation. To overcome the mass interference between phosphorus and silicon isotopes, the quantitative analysis of counts to concentration conversion was done following two routes, standard relative sensitivity factor (RSF) and SIMetric software estimation. Phosphorus doped silicon thin film of 180 nm was grown on glass substrate using hot wire chemical vapor deposition technique for possible applications in optoelectronic devices. Using ToF-SIMS, the phosphorus-31 isotopes were detected in the range of 101~104 counts. The silicon isotopes matrix element was measured from p-type silicon wafer from a separate measurement to avoid mass interference. For the both procedures, the phosphorus concentration versus depth profiles were plotted which agree with a percent difference of about 3% at 100 nm depth. The concentration of phosphorus in silicon was determined in the range of 1019~1021 atoms/cm3. The technique will be useful for estimating distributions of various dopants in the silicon thin film grown on glass using ToF-SIMS overcoming the mass interference between isotopes.

Design and Fabrication of 6-Component Forces and Moments Sensor Using a Column Structure (원기둥을 이용한 6축 힘/모멘트 센서의 설계 및 제작)

  • Shin, Hong-Ho;Kim, Jong-Ho;Park, Yon-Kyu;Joo, Jin-Won;Kang, Dae-Im
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1288-1295
    • /
    • 2002
  • The column-type sensing element in building and mechanical construction parts was designed as three forces and three moments sensor by attaching strain gages approximately. Compared to conventional multi-component sensor, the designed sensor has high stiffness and low cost. The radius of the column was designed analytically and compared with finite element analysis. The interference errors between components were minimized by using addition and subtraction procedure of signals. The fabricated sensor was tested by using a deadweight force standard machine and a six-component force calibration machine. The calibration results showed that the 6-component forces and moments sensor had interference error less than 7.3 % between $F_x$ and $M_x$ components, and 5.0 % in case of other components.

Analysis of Interference Elements for the Integrated Equipment Operation in Tall Building Construction (초고층 골조공사의 통합 장비 운영을 위한 장비 간의 간섭요소 분석)

  • Lee, Dongyoon;Lim, Hyunsu;Kim, Baek-Joong;Cho, Hunhee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.173-175
    • /
    • 2013
  • In tall building construction, the equipment operation plans have an effect on productivity. Equipment, used in tall building construction, has operating plans of each it and restrictively operate owing to the first placed equipment operation. Therefore the interference of equipment was occur frequently. As it, the productivity is less effective and the construction delay occurs. This research was analysis the interference elements between the equipment for constructing the efficient equipment associated operational processes. The interference elements between the equipment derive through expert advice and analysis using IPA. Through the IPA, this research deducted the interference elements located 'Concentrate Here' which is the highest importance and the lowest performance.

  • PDF

Design of sensing element for 3-component load cell using parallel plate structure (병렬판구조를 이용한 3분력 로드셀 감지부의 설계)

  • Kim, Gap-Sun;Kang, Dae-Im;Jeong, Su-Yeon;Joo, Jin-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1871-1884
    • /
    • 1997
  • This paper describes the design process of a 3-component load cell with a multiple parallel plate structure which may be used to measure transverse forces and twisting moment simultaneously. Also we have derived equations to predict the bending strains on the surface of the beams in the multiple parallel plate structure under transverse force or twisting moment. It reveals that the bending strains calculated from the derived equations are in good agreement with the results from finite element analysis and experiment. Also we have evaluated the rated output and interference error of each component, which can be efficiently used to design a 3-component load cell with a multiple parallel plate structure.

Design and Strain Analysis of Precision 3-component Load Cell

  • Kim, Gab-Soon;Rhee, Se-Hun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.22-32
    • /
    • 2000
  • This paper describes the development of a precision 3-component load cell with plate beams which may be used for measuring forces Fx, Fy and moment Mz simultaneously in industry. The equations to predict the bending strains on the surface of the beams under forces or moment are derived, the attachment location of strain gages of each sensor is determined, and 3-component load cell is carried out. It reveals that the rated strain calculated from the derived equations are good agreement with the results from Finite Element Method analysis.

  • PDF