• Title/Summary/Keyword: interfacial change

Search Result 214, Processing Time 0.026 seconds

Junction of Porous SiC Semiconductor and Ag Alloy (다공질 SiC 반도체와 Ag계 합금의 접합)

  • Pai, Chul-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.576-583
    • /
    • 2018
  • Silicon carbide is considered to be a potentially useful material for high-temperature electronic devices, as its band gap is larger than that of silicon and the p-type and/or n-type conduction can be controlled by impurity doping. Particularly, porous n-type SiC ceramics fabricated from ${\beta}-SiC$ powder have been found to show a high thermoelectric conversion efficiency in the temperature region of $800^{\circ}C$ to $1000^{\circ}C$. For the application of SiC thermoelectric semiconductors, their figure of merit is an essential parameter, and high temperature (above $800^{\circ}C$) electrodes constitute an essential element. Generally, ceramics are not wetted by most conventional braze metals,. but alloying them with reactive additives can change their interfacial chemistries and promote both wetting and bonding. If a liquid is to wet a solid surface, the energy of the liquid-solid interface must be less than that of the solid, in which case there will be a driving force for the liquid to spread over the solid surface and to enter the capillary gaps. Consequently, using Ag with a relatively low melting point, the junction of the porous SiC semiconductor-Ag and/or its alloy-SiC and/or alumina substrate was studied. Ag-20Ti-20Cu filler metal showed promise as the high temperature electrode for SiC semiconductors.

Electricity Production by Metallic and Carbon Anodes Immersed in an Estuarine Sediment (퇴적토에 담지된 금속 및 탄소전극에 의한 전기 생산 특성)

  • Song, Hyung-Jin;Rhee, In-Hyoung;Kwon, Sung-Hyun;Cho, Dae-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3731-3739
    • /
    • 2009
  • One-chambered sediment cells with a variety of anodic electrodes were tested for generation of electricity. Material used for anodes was iron, brass, zinc/iron, copper and graphite felt which was used for a common cathode. The estuarine sediment served as supplier of oxidants or electron-producing microbial habitat which evoked electrons via fast metal corrosion reactions or a complicated microbial electron transfer mechanism, respectively. Maximum power density and current density were found to be $6.90\;W/m^2$ (iron/zinc) and $7.76\;A/m^2$ (iron), respectively. Interestingly, copper wrapped with carbon cloth produced better electric performance than copper only, by 60%, possibly because the cloth not only prevented rapid corrosion on the copper surface by some degrees, but also helped growing some electron-emitting microbes on its surface. At anodes oxidation reduction potential(ORP) was kept to be stationary over time except at the very initial period. The pH reduction in the copper and copper/carbon electrodes could be a sign of organic acid production due to a chemical change in the sediment. The simple estimation of interfacial, electrical resistances of electrodes and electrolyte in the sediment cell that a key to the electricity generation should be in how to control corrosion rate or microbial electron transfer activity.

A Study on the Degradation Properties of DGEBA/TETA Epoxy System for Restoration of Ceramics by Temperature (도자기 복원용 DGEBA/TETA Epoxy계 수지의 온도에 의한 열화 특성 연구)

  • Nam, Byeong Jik;Jang, Sung Yoon
    • Journal of Conservation Science
    • /
    • v.31 no.4
    • /
    • pp.373-386
    • /
    • 2015
  • This study identified degradation properties by temperature stress with Araldite$^{(R)}$ AY103-1/HY956 used for ceramics. Tensile and compressive strength of durability increased for 6,480 hours at temperature of $34{\sim}45^{\circ}C$. In stability of external stress and temperature, compressive strength is superior to tensile strength, it requires conservation plans considering strength properties and stress of restoration materials. The tensile shear strength of adhesion properties decreased for 4,320 hours at temperature of $40{\sim}60^{\circ}C$. In ceramics with porosity, environments under isothermal-isohumidity are important because interfacial properties of adherend are concerned with performance variation. Glossiness decreased for 6,480 hours at temperature of $34{\sim}45^{\circ}C$ and color difference increased. Gloss stability was superior and color stability was weak, which requires improvement of optical properties. In artifacts on display in museums, there is concern about temperature rise on restoration materials by lighting therefore, it needs to minimize change in physical properties by exposure environments.

Autohesion Behavior of Brominated-Isobutylene-Isoprene Gum Nanocomposites with Layered Clay (층상점토 충전 브롬화 이소부틸-이소프렌 검 나노복합체의 점착거동)

  • Mensah, Bismark;Kim, Sungjin;Lee, Dae Hak;Kim, Han Gil;Oh, Jong Gab;Nah, Changwoon
    • Elastomers and Composites
    • /
    • v.49 no.1
    • /
    • pp.43-52
    • /
    • 2014
  • The effect of nanoclay (Cloisite 20A) on the self-adhesion behavior of uncured brominated-isobutylene-isoprene rubber (BIIR) has been studied. The dispersion state of nanoclay into the rubber matrix was examined by SEM, TEM and XRD analysis. The thermal degradation behavior of the filled and unfilled samples was examined by TGA and improvement in the thermal stability of the nanocomposites occurred based on the weight loss (%) measurements. Also, addition of nanoclay enhanced the cohesive strength of the material by reinforcement action thereby reducing the degree of molecular diffusion across the interface of butyl rubber. However, the average depth of penetration of the inter-diffused chains was still adequate to form entanglement on either side of the interface, and thus offered greater resistance to peeling, resulting in high tack strength measurements. The improvement in tack strength was only achieved at critical nanoclay loading above 8 phr. Contact angle measurement was also made to examine the surface characteristics. There was no significant interfacial property change by employing the nanoclay.

Flexural Behavior and Analysis of RC Beams Strengthened with Prestressed CFRP Plates (프리스트레스트 탄소섬유판으로 보강된 철근콘크리트 보의 휨 거동 및 해석)

  • Yang, Dong-Suk;Park, Jun-Myung;You, Young-Chan;Park, Sun-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.467-474
    • /
    • 2007
  • In this paper, a total of 13 beams with bonding, anchorage system, amount of prestressing and span length as variables of experiment were tested in flexural test and analyzed in finite element analysis; one control beam, two simplified FRP-boned beams, four prestressed FRP-unbonded beams and four prestressed FRP-bonded beams. Also, a nonlinear finite element analysis of beams in the flexural test is performed by DIANA program considered material nonlinear of concrete, reinforcement and the interfacial bond-slip model between concrete and CFRP plates. The failure mode of prestressed CFRP plated-beams is not debonding but FRP rupture. RC members strengthened with external bonded prestressed CFRP plates occurred 1st and 2nd debonding of the composite material. After the debonding of CFRP plates occurs in bonded system, behavior of bonded CFRP-plated beams change into that of unbonded CFRP-plated beams due to fix of the anchorage system. Also, It was compared flexural test results and analytical results of RC members strengthened with CFRF plates. The ductility of beams strengthened by CFRP plates with the anchorage system is considered high with the ductility index of above 3. Analysis results showed a good agreement with experiment results in the debonding load, yield load and ultimate load.

The Aging Effect of $Avimid^(R)$ K3B/1M7 Laminates in $80^{\circ}C$ Water ($Avimid^(R)$ K3B/IM7 복합재료의 $80^{\circ}C$ 물에서의 노화현상)

  • Kim Hyung-Won
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.4
    • /
    • pp.23-30
    • /
    • 2005
  • The Hygrothermal aging of the laminates of $Avimid^(R)$ K3B/IM7 in $80^{\circ}C$ water was studied as a function of immersion time prior to forming microcracks. The factors causing the $80^{\circ}C$ water to degradation of the laminates could be the degradation of the matrix toughness, the change in residual stresses or the interfacial damage between the fiber and the matrix. The times to saturation in $80^{\circ}C$ water for the laminates and for the neat resin were 100 hours and 500 hours. After 500 hours aging of the neat resin, the glass transition temperature was changed less than 1% by DSC test, and the weight gain was 1.55% increase with the diffusion coefficient $7\times10^{-6}m/s^2$ and the fracture toughness was decreased about 41%. After 100 hours fully saturated aging of the ${[+45/0/-45/90]}_s$ K3B/IM7 laminates in $80^{\circ}C$ water, the weight gain was 0.41% increase with the diffusion coefficient $1\times10^{-6}m/s^2$. In 100 hours, the loss of the fracture toughness of the laminates was 43.8% of the original toughness by the microcracking fracture toughness criterion. Therefore, the main factor to degrade the microcracking toughness of the laminates could be the degradation of the matrix fracture toughness.

Interfacial and Mechanical properties of Different Heat Treated Wood and Evaluation of Bonding Property between Stone and Wood for Rock Bed (열처리 조건에 따른 목재의 계면과 기계적 물성 및 돌침대용 석재/목재간 접착제에 따른 접착력 평가)

  • Kwon, Dong-Jun;Shin, Pyeong-Su;Choi, Jin-Yeong;Moon, Sun-Ok;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.16 no.2
    • /
    • pp.69-75
    • /
    • 2015
  • Stone board for the rock bed was needed to reduce weight using thin thickness and reinforced materials. In this work, stone/wood board for rock bed was studied. Stone and wood were attached to reduce total weight of stone for rock bed. For reinforcing wood heat treatment method was used to change surface and mechanical properties. Mechanical strength of heat treated wood increased more than neat condition. The optimum heat treatment condition was set on $100^{\circ}C$ under tensile, flexural loads whereas surface energy was also obtained by contact angle measurement. Optimum adhesive condition was to get the maximum adhesion between stone and wood. Lap shear test was performed for stone/wood board with different adhesives such as amine type epoxy, polyurethane, chloro-rubber and vinyl chloride acetate type. Fracture surface of lap shear test was shown at wood fracture part on stone using amine type epoxy adhesive. It was found that for high adhesion between stone and wood the optimum adhesive was epoxy type for the rock bed.

Electro-rheological Measurements of Phase Inversion of Emulsions under Shear Flow (전단응력 하에서 에멀젼 상 변이의 측정을 위한 전기 유변학적 연구)

  • Seung Jae, Baik;Young-Jin, Lee;Yoon Sung, Nam;Chin Han, Kim;Han Kon, Kim;Hak Hee, Kang
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.147-151
    • /
    • 2004
  • This study aims at measuring electrical and rheological properties of cosmetic emulsions on the skin under shear flow. The effects of volume ratio and surfactants on structural changes of emulsions were examined by determining the changes of electrical resistance, viscosity, and morphology. As the ratio of the internal phase increased, the phase inversion occurred more quickly. The viscosity change was found to increase with increasing of the variation of electrical resistance of the emulsions. This phenomenon may be caused by decreased resistant force against the shear flow because of the breakdown of the internal phase. Surfactants a]so played a key ro]e on phase transition of emulsions. It is likely that polymeric surfactants anchoring on the emulsion surface reinforced the interfacial mechanical strength. As the concentration of surfactants increased, the phase transition occurred more slowly. It has been demonstrated that the phase changes of emulsions under shear flow can be monitored on the real-time basis by using a JELLI$\^$TM/ chip system, a combination of conductiometry and rheometry. Our approach is expected to a useful experimental tool for predicting the phase transition of the cosmetic products during skin application.

Studies on Thermal and Dynamic Viscoelastic Behaviors of Multiwalled Carbon Nanotubes-reinforced Epoxy Matrix Composites (다중벽 탄소나노튜브강화 에폭시 매트릭스 복합재료의 열적 및 동적 점탄성 거동 연구)

  • Seo, Min-Kang;Park, Soo-Jin
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.401-406
    • /
    • 2005
  • In this work, the effect of chemical treatment of multiwalled carbon nanotubes (MWNTs) on glass transition temperature (Tg), thermal stability, and dynamic viscoelastic behaviors of MWNTs-reinforced epoxy matrix composites has been studied by differencial scanning calorimeter (DSC), thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA) measurements. The MWNTs were chemically treated with 35 wt% $H_3PO_4$ (A-MWNTs) or 35 wt% KOH (B-MWNTs) solutions and the changes of surface properties of chemically treated MWNTs were examined by pH, acid and base values, Fourier transfer-infrared spectroscopy (FT-IR), and x-ray photoelectron spectroscopy (XPS) analyses. The chemical treatments based on acid and base reactions led to a significant change of surface characteristics and chemical compositions of the MWNTs, especially A-MWNTs/epoxy composites had higher thermal stability and dynamic viscoelastic properties than those of B-MWNTs and non-treated MWNTs/epoxy composites. These results were probably due to the improvement of interfacial bonding strength, resulting from the acid-base interaction and hydrogen bonding between the epoxy resins and the MWNT fillers.

Study on Growth Optimization of InAs/GaSb Strained-Layer Superlattice Structures by High-Resolution XRD Analysis (고분해능 XRD 분석에 의한 InAs/GaSb 응력초격자 구조의 성장 최적화 연구)

  • Kim, J.O.;Shin, H.W.;Choe, J.W.;Lee, S.J.;Kim, C.S.;Noh, S.K.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.4
    • /
    • pp.245-253
    • /
    • 2009
  • For the growth optimization of InAs/GaSb (8/8-ML) strained-layer superlattice (SLS), the structure has been grown under various conditions and modes and characterized by the high-resolution x-ray diffraction (XRD) analysis. In this study, the strain modulation is induced by changing parameters and modes, such as the growth temperature, the ratio of V/III beam-equivalent-pressure (BEP), and the growth interruption (GI), and the strain variation is analyzed by measuring the angle separation of 0th-order satellite peak in XRD patterns. The XRD results reveal that the growth temperature and the V/III(Sb/Ga) ratio are major parameters to change the crystallineity and the strain modulation in SLS structures, respectively. We have observed that the SLS samples with compressive strain prepared in this study are show a transition to tensile strain with decreasing V/III(Sb/Ga) ratio, and the GI process is a sensitive factor giving rise to strain modulation. These results obtained in this study suggest that optimized growth temperature and V/III(Sb/Ga) ratio are $350^{\circ}C$ and 20, respectively, and the appropriate GI time is approximately 3 seconds just before InAs growth that the crystallineity is maximized and the strain relaxation is minimized.