Studies on Thermal and Dynamic Viscoelastic Behaviors of Multiwalled Carbon Nanotubes-reinforced Epoxy Matrix Composites

다중벽 탄소나노튜브강화 에폭시 매트릭스 복합재료의 열적 및 동적 점탄성 거동 연구

  • Seo, Min-Kang (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Park, Soo-Jin (Advanced Materials Division, Korea Research Institute of Chemical Technology)
  • 서민강 (한국화학연구원 화학소재연구부) ;
  • 박수진 (한국화학연구원 화학소재연구부)
  • Received : 2005.01.11
  • Accepted : 2005.03.10
  • Published : 2005.06.30

Abstract

In this work, the effect of chemical treatment of multiwalled carbon nanotubes (MWNTs) on glass transition temperature (Tg), thermal stability, and dynamic viscoelastic behaviors of MWNTs-reinforced epoxy matrix composites has been studied by differencial scanning calorimeter (DSC), thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA) measurements. The MWNTs were chemically treated with 35 wt% $H_3PO_4$ (A-MWNTs) or 35 wt% KOH (B-MWNTs) solutions and the changes of surface properties of chemically treated MWNTs were examined by pH, acid and base values, Fourier transfer-infrared spectroscopy (FT-IR), and x-ray photoelectron spectroscopy (XPS) analyses. The chemical treatments based on acid and base reactions led to a significant change of surface characteristics and chemical compositions of the MWNTs, especially A-MWNTs/epoxy composites had higher thermal stability and dynamic viscoelastic properties than those of B-MWNTs and non-treated MWNTs/epoxy composites. These results were probably due to the improvement of interfacial bonding strength, resulting from the acid-base interaction and hydrogen bonding between the epoxy resins and the MWNT fillers.

본 연구에서는 다중벽 탄소나노튜브의 화학적 표면처리가 에폭시 매트릭스 복합재료의 유리전이온도, 열안정성 그리고 동적 점탄성거동에 미치는 영향을 고찰하기 위하여 시차주사열량계(DSC), 열중량분석기(TGA) 그리고 동적 기계적 분석기(DMA)를 통하여 각각 측정하였다. 탄소나노튜브의 표면처리는 35 wt%의 $H_3PO_4$(A-MWNTs) 혹은 35 wt% KOH(B-MWNTs) 용액으로 화학적 표면처리를 하였으며, 표면처리 후 표면특성 변화는 pH, 표면 산 및 염기도, 적외선 분광법(FT-IR)과 자외선 광전자 스펙트럼(XPS) 분석을 통하여 알아보았다. 그 결과로서, 산-염기 상호반응에 의한 각각의 표면처리는 탄소나노튜브의 표면특성 및 화학적 조성 변화를 가져오며, 산처리한 MWNTs/에폭시 복합재료의 경우가 염기처리 및 미처리 시편과 비교하여 열안정성 및 동적 점탄성 특성에 있어서 탄소나노튜브 표면에 도입된 산성 관능기 그룹의 영향으로 큰 값을 나타내었다. 이는 염기성을 가지는 에폭시 수지와 산성을 가지는 탄소나노튜브와의 산-염기 및 수소결합에 의한 계면결합력의 향상 때문이라 생각된다.

Keywords

References

  1. Benoit, J., 'Micro and Nanotechnologies: a Challenge on the Way Forward to New Markets,' J. Mater. Sci. Eng. B, 51(1-3), 254-257 (1998) https://doi.org/10.1016/S0921-5107(97)00218-3
  2. Dickinson, J. T., Nwe, K. H., Hess, W. P. and Langford, S. C., 'Synergistic Effects of Exposure of Surfaces of Ionic Crystals to Radiation and Water,' Appl. Surf. Sci., 208-209, 2-14(2003) https://doi.org/10.1016/S0169-4332(02)01277-1
  3. Hammel, E., Tang, X., Trampert, M., Schmitt, T., Mauthner, K., Eder, A. and Potschke, P., 'Carbon Nanofibers for Composite Applications,' Carbon, 42(5-6), 1153-1158(2004) https://doi.org/10.1016/j.carbon.2003.09.012
  4. Li, W., Liang, C., Qiu, J., Zhou, W., Han, H., Wei, Z., Sun, G., and Xin, Q., 'Carbon Nanotubes as Support for Cathode Catalyst of a Direct Methanol Fuel Cell,' Carbon, 40(5), 791-794(2002) https://doi.org/10.1016/S0008-6223(02)00039-8
  5. Wilder, J. W. G., Venema, L. C., Rinzler, A. G. and Smalley, R. E., 'Electronic Structure of Atomically Resolved Carbon Nanotubes,' Nature, 391, 59-62(1998) https://doi.org/10.1038/34139
  6. Shi, Y. S., Zhu, C. C., Qikun, W. and Xin, L., 'Large Area Screen- Printing Cathode of CNT for FED,' Diamond Relat. Mater., 12(9), 1449-1452(2003) https://doi.org/10.1016/S0925-9635(03)00170-5
  7. Overney, G., Zhong, W. and Tomanek, D., 'Structural Rigidity and low Frequency Vibrational Modes of Long Carbon Tubules,' Eur. Phys. J. D., 27(1), 93-96(1993) https://doi.org/10.1140/epjd/e2003-00225-3
  8. Che, G., Lakshmi, B. B., Fisher, E. R. and Martin, C. R., 'Carbon Nanotubule Membranes for Electrochemical Energy Storage and Production,' Nature, 393, 346-349(1998) https://doi.org/10.1038/30694
  9. Gao, B., Kelinhammes, A., Tang, X. P., Bower, C., Wu, Y. and Zhou, O., 'Electrochemical Intercalation of Single-Walled Carbon Nanotubes With Lithium,' Chem. Phys. Lett., 307(3-4), 153-157(1999) https://doi.org/10.1016/S0009-2614(99)00486-8
  10. Dillon, A. C., Jones, K. M., Bekkendahl, T. A., Kiang, C. H., Bethune, D. S. and Heben, M. J., 'Storage of Hydrogen in Sin- Gle-Walled Carbon Nanotube,' Nature, 386, 377-379(1997) https://doi.org/10.1038/386377a0
  11. Sun, J., Iwasa, M., Gao, L. and Zhang, Q., 'Single-Walled Carbon Nanotubes Coated with Titania Nanoparticles,' Carbon, 42(4), 895-899(2004) https://doi.org/10.1016/j.carbon.2004.01.074
  12. Ahn, K. S., Kim, J. S., Kim, C. O. and Hong, J. P., 'Non-Reactive rf Treatment of Multiwall Carbon Nanotube with Inert Argon Plasma for Enhanced Field Emission,' Carbon, 41(13), 2481-2485 (2003) https://doi.org/10.1016/S0008-6223(03)00294-X
  13. Kyotani, T., Nakazaki, S., Xu, W. H. and Tomita, A., 'Chemical Modification of the Inner Walls of Carbon Nanotubes by $HNO_{3}$ Oxidation,' Carbon, 39(5), 782-785(2001) https://doi.org/10.1016/S0008-6223(01)00013-6
  14. Takizawa, M., Bandow, S., Torii, T. and Iijima, S., 'Effect of Environment Temperature for Synthesizing Single-Wall Carbon Nanotubes by arc Vaporization Method,' Chem. Phys. Lett., 302(1-2), 146-150(1999) https://doi.org/10.1016/S0009-2614(99)00113-X
  15. Journet, C., Mase, W. K., Bernier, P., Loiseau, A., Lamy de la, Chpelle, M. and Lefrant, S., 'Large-Scale Production of Single- Walled Carbon Nanotubes by the Electric-Arc Technique,' Nature, 388, 756-758(1997) https://doi.org/10.1038/41972
  16. Park, S. J., in J. P. Hsu (Ed.), Interfacial Forces and Fields: Theory and Application, Chap 9, Marcel Dekker, New York(1999)
  17. Park, S. J., Cho, K. S. and Kim, S. H., 'A Study on Dielectric Characteristics of fLuorinated Polyimide Thin Film,' J. Colloid Interface Sci., 272(2), 384-390(2004) https://doi.org/10.1016/j.jcis.2003.12.027
  18. Park, S. J., Seo, M. K., Ma, T. J. and Lee, D. R., 'Effect of Chemical Treatment of Kevlar Fibers on Mechanical Interfacial Properties of Composites,' J. Colloid Interface Sci., 252(1), 249- 255(2002) https://doi.org/10.1006/jcis.2002.8479
  19. Boehm, H. P., Chemical Identification of Surface Groups, 179- 274, in Eley D. D., Pines, H. and Weisz, P. B. (Ed.), Advances Catalysis, Vol. 16, Academic Press, New York(1966)
  20. Doyle, C. D., 'Kinetic Analysis of Thermogravimetric Data,' J. Appl. Polym. Sci., 5(15), 285-292(1961) https://doi.org/10.1002/app.1961.070051506
  21. Park, S. J., Kim, H. C., Lee, H. I. and Suh, D. H., 'Thermal Stability of Imidized Epoxy Blends Initiated by N-Benzylpyrazinium Hexafluoroantimonate Salt,' Macromolecules, 34(22), 7573-7575 (2001) https://doi.org/10.1021/ma010792x
  22. Park, S. J. and Kim, K. D., 'Adsorption Behaviors of $CO_{2}$ and $NH_{3}$ on Chemically Surface-Treated Activated Carbons,' J. Colloid Interface Sci., 212(1), 186-189(1999) https://doi.org/10.1006/jcis.1998.6058
  23. Park, S. J. and Kim, J. S., 'Role of Chemically Modified Carbon Black Surfaces in Enhancing Interfacial Adhesion Between Carbon Black and Rubber in a Composite System,' J. Colloid Interface Sci., 232(2), 311-316(2000) https://doi.org/10.1006/jcis.2000.7160
  24. Park, S. J. and Donnet, J. B., 'Anodic Surface Treatment on Carbon Fibers: Determination of Acid-Base Interaction Parameter Between two Unidentical Solid Surfaces in a Composite System,' J. Colloid Interface Sci., 206(1), 29-32(1998) https://doi.org/10.1006/jcis.1998.5672
  25. Cousin, P. and Smith, P., 'Dynamic Mechanical Properties of Sulfonated Polystyrene/Alumina Composites,' J. Polym. Sci. Polym. Phys., 32(3), 459-468(1994) https://doi.org/10.1002/polb.1994.090320307
  26. Park, S. J., Lee, H. Y., Han, M. and Hong, S. K., 'Thermal and Mechanical Interfacial Properties of the DGEBA/PMR-15 Blend System,' J. Colloid Interface Sci., 270(2), 28-294(2004)
  27. Horowitz, H. H. and Metzger, G., 'A New Analysis of Thermogravimetric Traces,' Anal. Chem., 35(10), 1464-1468(1963) https://doi.org/10.1021/ac60203a013