• Title/Summary/Keyword: interfacial

Search Result 2,954, Processing Time 0.026 seconds

Thermally Conductive Polymer Composites for Electric Vehicle Battery Housing (전기자동차 배터리 하우징용 열전도성 고분자 복합재료)

  • Yoon, Yeo-Seong;Jang, Min-Hyeok;Moon, Dong-Joon;Jang, Eun-jin;Oh, Mee-Hye;Park, Joo-Il
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.4
    • /
    • pp.331-337
    • /
    • 2022
  • Manufactured thermoplastic composite materials to replace the metal materials used as battery housing materials for electric vehicles with lightweight materials. As the matrix material, nylon 6 which is a polymer material was used. Boron Nitrate(BN), which has high thermal conductivity, was used to provide heat dissipation performance. The heat dissipation characteristics of the thermally conductive polymer composite material according to the BN content and particle size were analyzed. The thermal conductivity value increased as the filler content increased, and composite materials particle size of 60 to 70㎛ and BN content of 50%, the thermal conductivity was 1.4 W/mK. The larger the particle size, the wider the inter-particle interface contact surface, which means that a thermal path was formed. wider the interfacial contact surface between the particles, and the thermal path was formed. A battery housing was manufactured using the manufactured thermally conductive polymer composite material, and the temperature change during charging and discharging of the cell was observed, and the possibility as a substitute material for the battery housing was confirmed.

Multi-Layered Sintered Porous Transport Layers in Alkaline Water Electrolysis (다층 소결메쉬 확산체를 이용한 알칼라인 수전해 셀)

  • YEOM, SANG HO;YUN, YOUNG HWA;CHOI, SEUNGWOOK;KWON, JIHEE;LEE, SECHAN;LEE, JAE HUN;LEE, CHANGSOO;KIM, MINJOONG;KIM, SANG-KYUNG;UM, SUKKEE;KIM, CHANG-HEE;CHO, WON CHUL;CHO, HYUN-SEOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.6
    • /
    • pp.442-454
    • /
    • 2021
  • The porous transport layer (PTL) is essential to effectively remove oxygen and hydrogen gas from the electrode surface at high current density operation conditions. In this study, the effect of PTL with different characteristics such as pore size, pore gradient, interfacial coating was investigated by multi-layered sintered mesh. A water electrolysis single cell of active area of the 34.56 cm2 was constructed, and IV performance and impedance analysis were conducted in the range of 0 to 2.0 A/cm2. It was confirmed that the multi-layered sintered mesh PTL, which have an average pore size of 25 to 57 ㎛ and a larger pore gradient, removed bubbles effectively and thus seemed to improve IV performance. Also, it was confirmed that the catalytic metals such as Ni, NiMo coating on the PTL reduced activation overpotential, but increased mass transport overpotential.

Electrochemical Performance of Rechargeable Lithium Battery Using Hybrid Solid Electrolyte (복합고체 전해질을 적용한 리튬이차전지의 전기화학적 특성)

  • Han, Jong Su;Yu, Hakgyoon;Kim, Jae-Kwang
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.4
    • /
    • pp.100-105
    • /
    • 2021
  • Recently, all-solid-state batteries have attracted much attention to improve safety of rechargeable lithium batteries, but the solid-state batteries of conductive ceramics or solid polymer electrolytes show poor electrochemical properties because of several problems such as high interfacial resistance and undesired reactions. To solve the problems of the reported all-solid-state batteries, a hybrid solid electrolyte is suggested, in this study, NASICON-type nanoparticle Li1.5Al0.5Ti1.5P3O12 (LATP) conductive ceramic, PVdF-HFP, and a carbonate-based liquid electrolyte were composited to prepare a quasi-solid electrolyte. The hybrid solid electrolyte has a high voltage stability of 5.6 V and shows an suppress effect of lithium dendrite growth in the stripping-plating test. The LiNi0.83Co0.11Mn0.06O2 (NCM811)-based battery with the hybrid solid electrolyte exhibits a high discharge capacity of 241.5 mAh/g at a high charge-cut-off voltage of 4.8V and stable electrochemical reaction. The NCM811-based battery also shows 139.4 mAh/g discharge capacity without short circuit or explosion at 90℃. Therefore, the LATP-based hybrid solid electrolyte can be an effective solution to improve the safety and electrochemical properties of rechargeable lithium batteries.

Evaluation of Fluidity Over Time and Mechanical Properties of Cement-based Composite Materials for 3D Printing (3D 프린팅용 시멘트계 복합재료의 경시변화 및 역학적 특성평가)

  • Seo, Eun-A;Lee, Ho-Jae;Yang, Keun-Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.73-80
    • /
    • 2022
  • This study evaluated changes in fluidity and rheological properties over time for 3D printed composite materials, and evaluated compressive strength and splitting tensile strength properties for laminated and molded specimens. The composite material for 3D printing starts to change rapidly after 30 minutes of extrusion, and the viscosity of the material tends to be maintained up to 90 minutes, but it was confirmed that construction within 60 minutes after mixing is effective. The compressive strength of the laminated test specimen showed equivalent or better performance at all ages compared to the molded test specimen. In the stress-strain curve of the laminated specimen, the initial slope was similar to that of the molded specimen, but the descending slope was on average 1.9 times higher than that of the molded specimen, indicating relatively brittle behavior. The splitting tensile strength of the P-V laminated specimen was about 6% lower than that of the molded specimen. It is judged that this is because the interfacial adhesion force against the vertical load is affected by the pattern direction of the laminated test specimen.

Study on the Modification Effect of Lightweight Aggregate using Blast Furnace Slag (고로슬래그 미분말을 이용한 경량골재의 표면개질 효과에 관한 연구)

  • Kim, Ho-Jin;Park, Sun-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.111-116
    • /
    • 2022
  • Recently, building structures tend to be super high-rise and large-scale with the development of concrete technology. When high-rise building is constructed of reinforced concrete structure, it has a disadvantage that its own weight increases. Light weight aggregate(LWA) was developed to compensate for these shortcomings. Manufacturing concrete using these light weight aggregates has the advantage of reducing the self weight of the reinforced concrete structure, but has a disadvantage in that the strength of the concrete is reduced. In this study, an experimental study was conducted to investigate the strength characteristics of hardened cement according to the presence or absence of surface coating of lightweight aggregates. As a result, in terms of compressive strength, the surface-coated lightweight aggregate exhibited higher strength than the uncoated lightweight aggregate. Also, it was considered that this is because the interfacial voids of the surface coated lightweight aggregate mixed cement hardened body were filled with blast furnace slag fine powder particles.

A Study on Improved Open-Circuit Voltage Characteristics Through Bi-Layer Structure in Heterojunction Solar Cells (이종접합 태양전지에서의 Bi-Layer 구조를 통한 향상된 개방전압특성에 대한 고찰)

  • Kim, Hongrae;Jeong, Sungjin;Cho, Jaewoong;Kim, Sungheon;Han, Seungyong;Dhungel, Suresh Kumar;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.6
    • /
    • pp.603-609
    • /
    • 2022
  • Passivation quality is mainly governed by epitaxial growth of crystalline silicon wafer surface. Void-rich intrinsic a-Si:H interfacial layer could offer higher resistivity of the c-Si surface and hence a better device efficiency as well. To reduce the resistivity of the contact area, a modification of void-rich intrinsic layer of a-Si:H towards more ordered state with a higher density is adopted by adapting its thickness and reducing its series resistance significantly, but it slightly decreases passivation quality. Higher resistance is not dominated by asymmetric effects like different band offsets for electrons or holes. In this study, multilayer of intrinsic a-Si:H layers were used. The first one with a void-rich was a-Si:H(I1) and the next one a-SiOx:H(I2) were used, where a-SiOx:H(I2) had relatively larger band gap of ~2.07 eV than that of a-Si:H (I1). Using a-SiOx:H as I2 layer was expected to increase transparency, which could lead to an easy carrier transport. Also, higher implied voltage than the conventional structure was expected. This means that the a-SiOx:H could be a promising material for a high-quality passivation of c-Si. In addition, the i-a-SiOx:H microstructure can help the carrier transportation through tunneling and thermal emission.

Covalent Organic Framework Based Composite Separation Membrane: A Review (공유 유기 골격체 기반 복합 분리막 : 고찰)

  • Jeong Hwan Shim;Rajkumar Patel
    • Membrane Journal
    • /
    • v.33 no.4
    • /
    • pp.149-157
    • /
    • 2023
  • Covalent organic frameworks (COFs) have shown promise in various applications, including molecular separation, dye separation, gas separation, filtration, and desalination. Integrating COFs into membranes enhances permeability, selectivity, and stability, improving separation processes. Combining COFs with single-walled carbon nanotubes (SWCNT) creates nanocomposite membranes with high permeability and stability, ideal for dye separation. Incorporating COFs into polyamide (PA) membranes improves permeability and selectivity through a synthetic interfacial strategy. Three-dimensional COF fillers in mixed-matrix membranes (MMMs) enhance CO2/CH4 separation, making them suitable for biogas upgrading. All-nanoporous composite (ANC) membranes, which combine COFs and metal-organic framework (MOF) membranes, overcome permeance-selectivity trade-offs, significantly improving gas permeance. Computational simulations using hypothetical COFs (hypoCOFs) demonstrate superior CO2 selectivity and working capacity relevant for CO2 separation and H2 purification. COFs integrated into thin-film composite (TFC) and polysulfonamide (PSA) membranes enhance rejection performance for organic contaminants, salt contaminants, and heavy metal ions, improving separation capabilities. TpPa-SO3H/PAN covalent organic framework membranes (COFMs) exhibited superior desalination performance compared to traditional polyamide membranes by utilizing charged groups to enable efficient desalination through electrostatic repulsion, suggesting their potential for ionic and molecular separations. These findings highlight COFs' potential in membrane technology for enhanced separation processes by improving permeability, selectivity, and stability. In this review, COF applied for the separation process is discussed.

Development of Chemical Cleaning Agents for Cleaning Indoor Water Supply Pipes (옥내급수관 세척용 화학세정제 개발 연구)

  • Lee, Jae-Hoon;Jung, Jae-Yong;Park, Yong-Bae;Bae, Jae-Heum;Woo, Dal-Sik;Sin, Hyun-Duk
    • Clean Technology
    • /
    • v.16 no.3
    • /
    • pp.162-171
    • /
    • 2010
  • The objective of this study is to develop cleaning agents for the indoor water supply pipe which is environmentally friendly and suitable for removing scale by using various organic acids, inorganic acids, and some additives. Among various organic acids, oxalic acid, citric acid, and malic acid showed good cleaning efficiency of iron oxides which were main components of the indoor water supply pipe scale. Several cleaning agents were formulated by adding chemical additives into these organic acids and evaluated for removal of iron oxides. In this study, it was found that nonionic surfactants were excellent for the removal of iron oxide scale among various additives. Two types of cleaning agents($F_1$, $F_2$) with comparatively high solvent power for iron oxides were formulated in this study. The cleaning agents $F_1$ made by organic acids and some additives were formulated to be safe and environmentally friendly, but seemed to have disadvantage due to their comparatively low cleaning efficiency of iron oxide than $F_2$. But, the cleaning agents $F_2$ prepared by adding inorganic acid a little to $F_1$ showed comparatively good cleaning efficiency of iron oxide and could be recommended for removing hard scale of iron oxides in the indoor water supply pipe. Thus, it is considered that the formulated cleaning agents should be selected based on the extent of scale in the indoor water supply pipe.

A Study on the Low Speed Impact Response and Frictional Characteristics of Shear Thickening Fluid Impregnated Kevlar Fabrics (전단농화유체를 함침한 케블라 직물의 저속충격 거동 및 마찰특성 연구)

  • Lee, Bok-Won;Lee, Song-Hyun;Kim, Chun-Gon;Yoon, Byung-Il;Paik, Jong-Gyu
    • Composites Research
    • /
    • v.21 no.2
    • /
    • pp.15-24
    • /
    • 2008
  • In this study, shear thickening fluid (STF) filled with rigid nano silica particles was impregnated in plain woven Kevlar fabrics to improve the impact resistance performance. The nano silica particles with an average diameter of 100nm, 300nm, and 500nm were used to make shear thickening fluid to estimate the effect of particle size on the impact behavior of STF impregnated Kevlar fabrics. The yam pull-out and frictional tests were conducted to estimate the effect of impregnated STF on the frictional characteristics. The test results showed that the friction forces were dramatically increased at the STF onset shear strain rates that were measured in preliminary rheology tests. The low speed impact tests were performed using the drop test machine. The results showed that the impregnated STF improved the impact resistance performance of the Kevlar fabrics in terms of the impact energy absorption and the deformation. It has been shown through tests that the impregnated STF affects the interfacial friction which contributes to improve the energy absorption in the Kevlar fabrics. Especially, the impregnation of the STF with the smaller particle size into the Kevlar fabrics showed the better performance in impact energy absorption.

Scalable Fabrications of Mixed-Matrix Membranes via Polymer Modification-Enabled In Situ Metal-Organic Framework Formation for Gas Separation: A Review (고분자 변형으로 가능해진 MOF의 원위치 형성을 이용한 혼합기질 기체분리막의 대면적화 가능한 제막)

  • Sunghwan Park;Young-Sei Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.213-220
    • /
    • 2023
  • Mixed-matrix membranes (MMMs), which are composed of a polymer matrix filled with high-performance fillers as a dispersed phase, have been intensively studied for gas separations for the past 30 years. It has been demonstrated that MMMs exhibit superior gas separation performance compared to polymer membranes and are more scalable than polycrystalline membranes. Despite their potential, the commercialization of MMMs has yet to be reported due to several challenging issues. One of the major challenges of MMMs is the non-ideal interface between the continuous polymer phase and dispersed phase, which can result in defect formation (i.e., interfacial voids, etc.). With respect, many MMM studies have focused on addressing the issues through scientific approaches. The engineering approaches for facile and effective large-scale fabrication of MMMs, however, have been relatively underestimated. In this review paper, a novel strategy for fabricating MMMs in a facile and scalable manner using in situ metal-organic framework (MOF) formation is introduced. This new MMM fabrication methodology can effectively address the issues facing current MMMs, likely facilitating the commercialization of MMMs.