• 제목/요약/키워드: interface energy

검색결과 1,775건 처리시간 0.025초

콘크리트의 계면 파괴와 균열 전파 : 파괴규준과 수치모의 (Interface Fracture and Crack Propagation in Concrete : Fracture Criteria and Numerical Simulation)

  • 이광명
    • 콘크리트학회지
    • /
    • 제8권6호
    • /
    • pp.235-243
    • /
    • 1996
  • 콘크리트의 역학적거동은 다양한 종류의 균열의 발생과 전파에 의하여 영향을 받는다. 최근 고성능 콘크리트의 개발이 이루어지면서 계면파괴와 계면역에서의 균열양상에 대한 연구가 중요한 분야로 부각되고 있다. 탄성이며 균질한 재료에 적용되는 균열전파에 대한 규준은 계면역에서 균열이 진전하는 경우는 유효하지 않으며 이 경우에는 콘크리트에서 균열전파를 예측하기 위하여 구성재료들의 파괴인성과 그들 사이 계면의 파괴인성의상대적인 크기를 고려하여야 한다. 본 논문에서는 계면균열선단에서 계면파괴역학변수인 에너지해방률과 하중위상각을 수치해석방법을 이용하여 구하는 방법과 계면에서의 균열전파의 예측을 위한 에너지해방률에 기초를 둔 파괴규준을 제안하였다. 계면역에서의 균열양상을 조사하기 위하여 계면균열을 가진 이상복합모델에 대한 실험과 수치해석연구를 수행하였으며 대체적으로 실험결과와 규준을 이용하여 예측한 결과가 서로 일치하는 결과를 얻었다.

질산산화법을 이용한 SiO2/Si 구조의 계면결함 제거 (Removal of Interface State Density of SiO2/Si Structure by Nitric Acid Oxidation Method)

  • 최재영;김도연;김우병
    • 한국재료학회지
    • /
    • 제28권2호
    • /
    • pp.118-123
    • /
    • 2018
  • 5 nm-thick $SiO_2$ layers formed by plasma-enhanced chemical vapor deposition (PECVD) are densified to improve the electrical and interface properties by using nitric acid oxidation of Si (NAOS) method at a low temperature of $121^{\circ}C$. The physical and electrical properties are clearly investigated according to NAOS times and post-metallization annealing (PMA) at $250^{\circ}C$ for 10 min in 5 vol% hydrogen atmosphere. The leakage current density is significantly decreased about three orders of magnitude from $3.110{\times}10^{-5}A/cm^2$ after NAOS 5 hours with PMA treatment, although the $SiO_2$ layers are not changed. These dramatically decreases of leakage current density are resulted from improvement of the interface properties. Concentration of suboxide species ($Si^{1+}$, $Si^{2+}$ and $Si^{3+}$) in $SiO_x$ transition layers as well as the interface state density ($D_{it}$) in $SiO_2/Si$ interface region are critically decreased about 1/3 and one order of magnitude, respectively. The decrease in leakage current density is attributed to improvement of interface properties though chemical method of NAOS with PMA treatment which can perform the oxidation and remove the OH species and dangling bond.

Boundary element analysis of singular thermal stresses in a unidirectional laminate

  • Lee, Sang Soon;Kim, Beom Shig
    • Structural Engineering and Mechanics
    • /
    • 제5권6호
    • /
    • pp.705-713
    • /
    • 1997
  • The residual thermal stresses at the interface corner between the elastic fiber and the viscoelastic matrix of a two-dimensional unidirectional laminate due to cooling from cure temperature down to room temperature were studied. The matrix material was assumed to be thermorheologically simple. The time-domain boundary element method was employed to investigate the nature of stresses on the interface. Numerical results show that very large stress gradients are present at the interface corner and this stress singularity might lead to local yielding or fiber-matrix debonding.

면외하중을 받는 상이한 직교 이방성 평면내의 평행균열 (Parallel Crack in Bonded Dissimilar Orthotropic Planes Under Out-of-Plane Loading)

  • 최성렬;권용수;채영석
    • 대한기계학회논문집
    • /
    • 제19권1호
    • /
    • pp.170-180
    • /
    • 1995
  • A parallel crack in bonded dissimilar orthotropic planes under out-of-plane loading is analyzed. The problem is formulated by Fourier integral transforms, and reduced to a pair of dual integral equations. By solving the integral equations, the asymptotic stress and displacement fields near the crack tip are determined in closed form, from which the stress intensity factor and energy release rate are obtained. Discontinuity in the stress intensity factor as the distance ratio h/a of the parallel crack approaches zero is found, while the energy releas rate is shown to be continuous at h/a = 0. This information can immediately be used to generate the stress intensity factor for the parallel crack near the interface. By employing "the maximum energy release rate criterion", it could be shown in the case of no existing crack initially that the parallel crack is formed far from the interface for the more compliant material, while it is formed close to the interface for the stiffer material. material.

유사등방성 이종재 접합계면 균열의 에너지 해방률에 관한 연구 (A Study on Energy Release Rate for Interface Cracks in Pseudo-isotropic Dissimilar Materials)

  • 이원욱;김진광;조상봉
    • 한국정밀공학회지
    • /
    • 제20권7호
    • /
    • pp.193-200
    • /
    • 2003
  • The energy release rate for an interface crack in pseudo-isotropic dissimilar materials was obtained by the eigenfunction expansion method using the two-term William's type complex stress function. The complex stress function for pseudo-isotropic materials must be different from that for anisotropic materials. The energy release rate for an interface crack in pseudo-isotropic dissimilar materials was analyzed numerically by RWCIM. The results obtained were verified by comparing the other worker's results and discussed.

초음파 조사에 의한 복합재료의 계면특성의 보강 개선에 관한 연구 (II) (A Study to Improve the Interface Strength of Composite Materials by the Radiation of Ultrasonic Energy)

  • 이상국;전춘생;김익년
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 추계학술대회 논문집 학회본부
    • /
    • pp.179-182
    • /
    • 1988
  • This study is to investigate the adhesive strength of composite material's interface on the experimental methode of tree growth in the material. The results are as fellows 1) The irradiations of ultrasonic energy cause the mechanical vibration in the polymer composite materials of fluid state, so then bring about physical dispersion and heat form inorganic materials, being supposed to produce chemical crosslinking reaction, decreasing of voids between filler and matrix. 2) The characterics of the breakdown are increased by using coupling agent in the composite material. 3) As the intensity of ultrasonic energy and its irradiated time are larger, the tree inception and break-down voltages increase and the tree growing is slower. so we obtain that the interface adhesive force tan be strengthened by the irradiation of ultrasonic energy.

  • PDF

유사등방성 이종재 접합계면 균열의 에너지해방률에 대한 연구 (A Study on Energy Release Rate for Interface Cracks in Pseudo-isotropic Dissimilar Materials)

  • 이원욱;김진광;조상봉
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.752-754
    • /
    • 1997
  • The stress intensity factor for an interface crack in dissimilar materials has been obtained by many researchers. But research of the energy release rate for an interface crack in pseudo-isotropic dissimilar materials is insufficient yet. In this paper, the energy release rate for cracks in pseudo-isotropic dissimilar materials was obtained using eigenfunction expansion method and also analyzed numerically using the reciprocal work contour integral method. The results were verified by comparing with other worker's results.

  • PDF

Development of An Integrated Test Facility (ITF) for the Advanced Man Machine Interface Evaluation

  • Oh, In-Seok;Cha, Kyung-Ho;Lee, Hyun-Chul;Sim, Bong-Sick
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1995년도 추계학술발표회논문집(1)
    • /
    • pp.117-122
    • /
    • 1995
  • An Integrated Test Facility(ITF) is a human factors experimental environment to evaluate an advanced man machine interface(MMI) design. The ITF includes a human machine simulator(HMS) comprised of a nuclear power plant function simulator, man-machine interface, experiment control station for the experiment control and design, human behavioural data measurement system, and data analysis and experiment evaluation supporting system(DAEXESS). The most important features of ITF is to secure the flexibility and expandibility of Man Machine Interlace(MMI) design to change easily the environment of experiments to accomplish the experiment's objects In this paper, we describe a development scope and characteristics of the ITF such as, hardware and software development scope and characteristics, system thermohydraulic modelling characteristics, and experiment station characteristics for the experiment variables design and control, to be used as an experiment environment for the evaluation of VDU-based control room.

  • PDF

에너지 방출률에 의한 접착이음의 계면균열에 대한 파괴인성의 평가 (Evaluation of Fracture Toughness by Energy Release Rate for Interface Crack in Adhesively Bonded Joints)

  • 정남용;이명대;강삼근
    • 대한기계학회논문집A
    • /
    • 제24권9호
    • /
    • pp.2174-2183
    • /
    • 2000
  • In this paper, the evaluation method of interfacial fracture toughness to apply the fracture toughness was investigated in adhesively bonded joints of AI/Ced./A1. Four types of adhesively bonded double-cantilever beam(DCB) joints with the interface crack were prepared for the test of interfacial fracture toughness. The experiments to measure the interfacial fracture toughness were performed under the various mixed-mode conditions. The critical energy release rate, Gc, was obtained by the experimental measurement of compliances. From the experimental results, the interfacial fracture toughness for the mixed-mode specimens is well characterized by the energy release rate, and the method of strength evaluation by the interfacial fracture toughness was discussed in adhesively bonded joints.