• Title/Summary/Keyword: interface energy

Search Result 1,778, Processing Time 0.031 seconds

Development of Optimization Program for the Building Energy Efficiency Improvement (건물에너지 효율향상을 위한 최적화 툴의 개발)

  • Han, Soo-Gon;Ihm, Pyeong-Chan;Huh, Jung-Ho;Kwon, Han-Sol
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.223-228
    • /
    • 2005
  • This study develops an optimization program to use optimum design of building HVAC system reducing building energy use and cost. Doe20pt developed is an interface program between DOE2 and GenOpt to perform the optimization procedure more easily. The optimum results can be used to estimate the economical efficiency concerning the building management.

  • PDF

Effect mechanism of unfrozen water on the frozen soil-structure interface during the freezing-thawing process

  • Tang, Liyun;Du, Yang;Liu, Lang;Jin, Long;Yang, Liujun;Li, Guoyu
    • Geomechanics and Engineering
    • /
    • v.22 no.3
    • /
    • pp.245-254
    • /
    • 2020
  • The interaction between the frozen soil and building structures deteriorates with the increasing temperature. A nuclear magnetic resonance (NMR) stratification test was conducted with respect to the unfrozen water content on the interface and a shear test was conducted on the frozen soil-structure interface to explore the shear characteristics of the frozen soil-structure interface and its failure mechanism during the thawing process. The test results showed that the unfrozen water at the interface during the thawing process can be clearly distributed in three stages, i.e., freezing, phase transition, and thawing, and that the shear strength of the interface decreases as the unfrozen water content increases. The internal friction angle and cohesive force display a change law of "as one falls, the other rises," and the minimum internal friction angle and maximum cohesive force can be observed at -1℃. In addition, the change characteristics of the interface strength parameters during the freezing process were compared, and the differences between the interface shear characteristics and failure mechanisms during the frozen soil-structure interface freezing-thawing process were discussed. The shear strength parameters of the interface was subjected to different changes during the freezing-thawing process because of the different interaction mechanisms of the molecular structures of ice and water in case of the ice-water phase transition of the test sample during the freezing-thawing process.

Fe3O4/CoFe2O4 superlattices; MBE growth and magnetic properties

  • Quang, Van Nguyen;Shin, Yooleemi;Duong, Anh Tuan;Nguyen, Thi Minh Hai;Cho, Sunglae;Meny, Christian
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.242-242
    • /
    • 2016
  • Magnetite, Fe3O4, is a ferrimagnet with a cubic inverse spinel structure and exhibits a metal-insulator, Verwey, transition at about 120 K.[1] It is predicted to possess as half-metallic nature, 100% spin polarization, and high Curie temperature (850 K). Cobalt ferrite is one of the most important members of the ferrite family, which is characterized by its high coercivity, moderate magnetization and very high magnetocrystalline anisotropy. It has been reported that the CoFe2O4/Fe3O4 bilayers represent an unusual exchange-coupled system whose properties are due to the nature of the oxide-oxide super-exchange interactions at the interface [2]. In order to evaluate the effect of interface interactions on magnetic and transport properties of ferrite and cobalt ferrite, the CoFe2O4/Fe3O4 superlattices on MgO (100) substrate have been fabricated by molecular beam epitaxy (MBE) with the wave lengths of 50, and $200{\AA}$, called $25{\AA}/25{\AA}$ and $100{\AA}/100{\AA}$, respectively. Streaky RHEED patterns in sample $25{\AA}/25{\AA}$ indicate a very smooth surface and interface between layers. HR-TEM image show the good crystalline of sample $25{\AA}/25{\AA}$. Interestingly, magnetization curves showed a strong antiferromagnetic order, which was formed at the interfaces.

  • PDF

Analytical Study on Interface Debonding of Reinforced Concrete Beams Strengthened with Carbon Fiber Sheet(CFS) (탄소섬유쉬트로 보강된 철근콘크리트보의 계면박리에 대한 해석적 연구)

  • Sim, Jong-Sung;Bae, In-Hwan
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.177-186
    • /
    • 1999
  • The purpose of this study is to analyze the interface debonding of RC beams strengthened by carbon fiber sheet(CFS). The behavior of damaged RC beams strengthened with CFS is analytically investigated next using linear elastic fracture mechanics(LEFM) approach and the finite element method. The study includes an investigation of the separation mode by interface fracture of the strengthening materials due to the interfacial shear and normal stresses. The numerical method is presented to obtain the value of interfacial fracture parameter such as the strain energy release rate. Based on the results of this study, it is found that the critical case occurs when the interfacial cracks occur within a short region of the flexural crack. The CFS strengthening has not an adequate factor of safety against interfacial debonding of CFS. Furthermore, for the thicknesses of the adhesive studied[1mm~3mm], it is no noticeable effect on the strain energy release rate.

A Fully-implicit Velocity Pressure coupling Algorithm-IDEAL and Its Applications

  • SUN, Dong-Liang;QU, Zhi-Guo;He, Ya-Ling;Tao, Wen-Quan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.1-13
    • /
    • 2008
  • An efficient segregated algorithm for the coupling of velocity and pressure of incompressible fluid flow, called IDEAL Inner Doubly-Iterative Efficient Algorithm for Linked-Equations), has been proposed by the present authors. In the algorithm there exist double inner iterative processes for pressure equation at each iteration level, which almost completely overcome two approximations in SIMPLE algorithm. Thus the coupling between velocity and pressure is fully guaranteed, greatly enhancing the convergence rate and stability of solution process. The performance of the IDEAL algorithm for three-dimensional incompressible fluid flow and heat transfer problems is analyzed and a systemic comparison is made between the algorithm and three other most widely-used algorithms (SIMPLER, SIMPLEC and PISO). It is found that the IDEAL algorithm is the most robust and the most efficient one among the four algorithms compared. This new algorithm is used for the velocity prediction of a new interface capturing method. VOSET, also proposed by the present author. It is found that the combination of VOSET and IDEAL can appreciably enhance both the interface capture accuracy and convergence rate of computations.

  • PDF

A Fully-implicit Velocity Pressure coupling Algorithm-IDEAL and Its Applications

  • Sun, Dong-Liang;Qu, Zhi-Guo;He, Ya-Ling;Tao, Wen-Quan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1-13
    • /
    • 2008
  • An efficient segregated algorithm for the coupling of velocity and pressure of incompressible fluid flow, called IDEAL (Inner Doubly-Iterative Efficient Algorithm for Linked-Equations), has been proposed by the present authors. In the algorithm there exist double inner iterative processes for pressure equation at each iteration level, which almost completely overcome two approximations in SIMPLE algorithm. Thus the coupling between velocity and pressure is fully guaranteed, greatly enhancing the convergence rate and stability of solution process. The performance of the IDEAL algorithm for three-dimensional incompressible fluid flow and heat transfer problems is analyzed and a systemic comparison is made between the algorithm and three other most widely-used algorithms (SIMPLER, SIMPLEC and PISO). It is found that the IDEAL algorithm is the most robust and the most efficient one among the four algorithms compared. This new algorithm is used for the velocity prediction of a new interface capturing method -VOSET, also proposed by the present author. It is found that the combination of VOSET and IDEAL can appreciably enhance both the interface capture accuracy and convergence rate of computations.

  • PDF

Search of Beacon in Low Power Wireless Interface (저전력 무선접속에서 비콘 탐색)

  • Song, Myong-Lyol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4A
    • /
    • pp.365-372
    • /
    • 2007
  • In IEEE 802.11b wireless network, stations synchronize themselves to the beacons periodically sent by the access point(AP) when they are running in low power mode. In case of missing beacon due to noise or traffic from neighboring wireless network stations must be awake until they get the next beacon, which causes energy consumption in stations. In this paper, we propose a scheme searching next beacon consuming little energy. The problems of missing beacon in low power mode of IEEE 802.11b wireless interface are described and a new method to reduce energy consumption is proposed. The proposed method is simulated with the network simulator, ns2, and compared with the low power mode of the IEEE 802.11b. The result measured in terms of station's wakeup time shows some enhancement in energy consumption when some errors occur in receiving frames.

Preparation of a Dense Cu(In,Ga)Se2 Film From (In,Se)/(Cu,Ga) Stacked Precursor for CIGS Solar Cells

  • Mun, Seon Hong;Chalapathy, R.B.V.;Ahn, Jin Hyung;Park, Jung Woo;Kim, Ki Hwan;Yun, Jae Ho;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • The $Cu(In,Ga)Se_2$ (CIGS) thin film obtained by two-step process (metal deposition and Se annealing) has a rough surface morphology and many voids at the CIGS/Mo interface. To solve the problem a precursor that contains Se was employer by depositing a (In,Se)/(Cu,Ga) stacked layer. We devised a two-step annealing (vacuum pre-annealing and Se annealing) for the precursor because direct annealing of the precursor in Se environment resulted in the small grains with unwanted demarcation between stacked layers. After vacuum pre-annealing up to $500^{\circ}C$ the CIGS film consisted of CIGS phase and secondary phases including $In_4Se_3$, InSe, and $Cu_9(In,Ga)_4$. The secondary phases were completely converted to CIGS phase by a subsequent Se annealing. A void-free CIGS/Mo interface was obtained by the two-step annealing process. Especially, the CIGS film prepared by vacuum annealing $450^{\circ}C$ and subsequent Se annealing $550^{\circ}C$ showed a densely-packed grains with smooth surface, well-aligned bamboo grains on the top of the film, little voids in the film, and also little voids at the CIGS/Mo interface. The smooth surface enhanced the cell performance due to the increase of shunt resistance.

Interfacial Fracture Toughness Measurement of Composite/metal Bonding (복합재료/금속 접착 계면의 파괴인성치 측정)

  • Kim, Won-Seock;Lee, Jung-Ju
    • Composites Research
    • /
    • v.21 no.4
    • /
    • pp.7-14
    • /
    • 2008
  • Prediction of the load-bearing capacity of an adhesive-bonded Joint is of practical importance for engineers. This paper introduces interface fracture mechanics approach to predict the load-bearing capacity of composite metal bonded joints. The adhesion strength of composite/steel bonding is evaluated in terms of the energy release rate of an interfacial crack and the fracture toughness of the interface. Virtual track closure technique (VCCT) is used to calculate energy release rates, and hi-material end-notched flexure (ENF) specimens are devised to measure the interfacial fracture toughness. Bi-material ENF specimens gave consistent mode II fracture toughness $(G_{IIc})$ values of the composite/steel interface regardless of the thickness of specimens. The critical energy release rates of double-lap joints showed a good agreement with the measured fracture toughness. Therefore. the energy-based interfacial fracture characterization can be a practical engineering tool for predicting the load-bearing capacity of bonded joints.

A Study of Kirkendall Void Formation and Impact Reliability at the Electroplated Cu/Sn-3.5Ag Solder Joint (전해도금 Cu와 Sn-3.5Ag 솔더 접합부의 Kirkendall void 형성과 충격 신뢰성에 관한 연구)

  • Kim, Jong-Yeon;Yu, Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.1
    • /
    • pp.33-37
    • /
    • 2008
  • A noticeable amount of Kirkendall voids formed at the Sn-3.5Ag solder joint with electroplated Cu, and that became even more significant when an additive was added to Cu electroplating bath. With SPS, a large amount of voids formed at the $Cu/Cu_3Sn$ interface of the solder joint during thermal aging at $150^{\circ}C$. The in-situ AES analysis of fractured joints revealed S segregation on the void surface. Only Cu, Sn, and S peaks were detected at the fractured $Cu/Cu_3Sn$ interfaces, and the S peak decreased rapidly with AES depth profiling. The segregation of S at the $Cu/Cu_3Sn$ interface lowered interface energy and thereby reduced the free energy barrier for the Kirkendall void nucleation. The drop impact test revealed that the electrodeposited Cu film with SPS degraded drastically with aging time. Fracture occurred at the $Cu/Cu_3Sn$ interface where a lot of voids existed. Therefore, voids occupied at the $Cu/Cu_3Sn$ interface are shown to seriously degrade drop reliability of solder joints.

  • PDF