• Title/Summary/Keyword: interaction strength

Search Result 1,030, Processing Time 0.035 seconds

Numerical Simulation of Dynamic Response of Seabed and Structure due to the Interaction among Seabed, Composite Breakwater and Irregular Waves (II) (불규칙파-해저지반-혼성방파제의 상호작용에 의한 지반과 구조물의 동적응답에 관한 수치시뮬레이션 (II))

  • Lee, Kwang-Ho;Baek, Dong-Jin;Kim, Do-Sam;Kim, Tae-Hyung;Bae, Ki-Seong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.3
    • /
    • pp.174-183
    • /
    • 2014
  • Seabed beneath and near coastal structures may undergo large excess pore water pressure composed of oscillatory and residual components in the case of long durations of high wave loading. This excess pore water pressure may reduce effective stress and, consequently, the seabed may liquefy. If liquefaction occurs in the seabed, the structure may sink, overturn, and eventually increase the failure potential. In this study, to evaluate the liquefaction potential on the seabed, numerical analysis was conducted using the expanded 2-dimensional numerical wave tank to account for an irregular wave field. In the condition of an irregular wave field, the dynamic wave pressure and water flow velocity acting on the seabed and the surface boundary of the composite breakwater structure were estimated. Simulation results were used as input data in a finite element computer program for elastoplastic seabed response. Simulations evaluated the time and spatial variations in excess pore water pressure, effective stress, and liquefaction potential in the seabed. Additionally, the deformation of the seabed and the displacement of the structure as a function of time were quantitatively evaluated. From the results of the analysis, the liquefaction potential at the seabed in front and rear of the composite breakwater was identified. Since the liquefied seabed particles have no resistance to force, scour potential could increase on the seabed. In addition, the strength decrease of the seabed due to the liquefaction can increase the structural motion and significantly influence the stability of the composite breakwater. Due to limitations of allowable paper length, the studied results were divided into two portions; (I) focusing on the dynamic response of structure, acceleration, deformation of seabed, and (II) focusing on the time variation in excess pore water pressure, liquefaction, effective stress path in the seabed. This paper corresponds to (II).

Numerical Simulation of Dynamic Response of Seabed and Structure due to the Interaction among Seabed, Composite Breakwater and Irregular Waves (I) (불규칙파-해저지반-혼성방파제의 상호작용에 의한 지반과 구조물의 동적응답에 관한 수치시뮬레이션 (I))

  • Lee, Kwang-Ho;Baek, Dong-Jin;Kim, Do-Sam;Kim, Tae-Hyung;Bae, Ki-Seong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.3
    • /
    • pp.160-173
    • /
    • 2014
  • Seabed beneath and near coastal structures may undergo large excess pore water pressure composed of oscillatory and residual components in the case of long durations of high wave loading. This excess pore water pressure may reduce effective stress and, consequently, the seabed may liquefy. If liquefaction occurs in the seabed, the structure may sink, overturn, and eventually increase the failure potential. In this study, to evaluate the liquefaction potential on the seabed, numerical analysis was conducted using the expanded 2-dimensional numerical wave tank to account for an irregular wave field. In the condition of an irregular wave field, the dynamic wave pressure and water flow velocity acting on the seabed and the surface boundary of the composite breakwater structure were estimated. Simulation results were used as input data in a finite element computer program for elastoplastic seabed response. Simulations evaluated the time and spatial variations in excess pore water pressure, effective stress, and liquefaction potential in the seabed. Additionally, the deformation of the seabed and the displacement of the structure as a function of time were quantitatively evaluated. From the results of the analysis, the liquefaction potential at the seabed in front and rear of the composite breakwater was identified. Since the liquefied seabed particles have no resistance to force, scour potential could increase on the seabed. In addition, the strength decrease of the seabed due to the liquefaction can increase the structural motion and significantly influence the stability of the composite breakwater. Due to limitations of allowable paper length, the studied results were divided into two portions; (I) focusing on the dynamic response of structure, acceleration, deformation of seabed, and (II) focusing on the time variation in excess pore water pressure, liquefaction, effective stress path in the seabed. This paper corresponds to (I).

Numerical Simulation on Seabed-Structure Dynamic Responses due to the Interaction between Waves, Seabed and Coastal Structure (파랑-지반-해안구조물의 상호작용에 기인하는 해저지반과 구조물의 동적응답에 관한 수치시뮬레이션)

  • Lee, Kwang-Ho;Baek, Dong-Jin;Kim, Do-Sam;Kim, Tae-Hyung;Bae, Ki-Seong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.1
    • /
    • pp.49-64
    • /
    • 2014
  • Seabed beneath and near the coastal structures may undergo large excess pore water pressure composed of oscillatory and residual components in the case of long durations of high wave loading. This excess pore water pressure may reduce effective stress and, consequently, the seabed may liquefy. If the liquefaction occurs in the seabed, the structure may sink, overturn, and eventually fail. Especially, the seabed liquefaction behavior beneath a gravity-based structure under wave loading should be evaluated and considered for design purpose. In this study, to evaluate the liquefaction potential on the seabed, numerical analysis was conducted using 2-dimensional numerical wave tank. The 2-dimensional numerical wave tank was expanded to account for irregular wave fields, and to calculate the dynamic wave pressure and water particle velocity acting on the seabed and the surface boundary of the structure. The simulation results of the wave pressure and the shear stress induced by water particle velocity were used as inputs to a FLIP(Finite element analysis LIquefaction Program). Then, the FLIP evaluated the time and spatial variations in excess pore water pressure, effective stress and liquefaction potential in the seabed. Additionally, the deformation of the seabed and the displacement of the structure as a function of time were quantitatively evaluated. From the analysis, when the shear stress was considered, the liquefaction at the seabed in front of the structure was identified. Since the liquefied seabed particles have no resistance force, scour can possibly occur on the seabed. Therefore, the strength decrease of the seabed at the front of the structure due to high wave loading for the longer period of time such as a storm can increase the structural motion and consequently influence the stability of the structure.

Evaluation of Tensions and Prediction of Deformations for the Fabric Reinforeced -Earth Walls (섬유 보강토벽체의 인장력 평가 및 변형 예측)

  • Kim, Hong-Taek;Lee, Eun-Su;Song, Byeong-Ung
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.157-178
    • /
    • 1996
  • Current design methods for reinforced earth structures take no account of the magnitude of the strains induced in the tensile members as these are invariably manufactured from high modulus materials, such as steel, where straits are unlikely to be significant. With fabrics, however, large strains may frequently be induced and it is important to determine these to enable the stability of the structure to be assessed. In the present paper internal design method of analysis relating to the use of fabric reinforcements in reinforced earth structures for both stress and strain considerations is presented. For the internal stability analysis against rupture and pullout of the fabric reinforcements, a strain compatibility analysis procedure that considers the effects of reinforcement stiffness, relative movement between the soil and reinforcements, and compaction-induced stresses as studied by Ehrlich 8l Mitchell is used. I Bowever, the soil-reinforcement interaction is modeled by relating nonlinear elastic soil behavior to nonlinear response of the reinforcement. The soil constitutive model used is a modified vertsion of the hyperbolic soil model and compaction stress model proposed by Duncan et at., and iterative step-loading approach is used to take nonlinear soil behavior into consideration. The effects of seepage pressures are also dealt with in the proposed method of analy For purposes of assessing the strain behavior oi the fabric reinforcements, nonlinear model of hyperbolic form describing the load-extension relation of fabrics is employed. A procedure for specifying the strength characteristics of paraweb polyester fibre multicord, needle punched non-woven geotHxtile and knitted polyester geogrid is also described which may provide a more convenient procedure for incorporating the fablic properties into the prediction of fabric deformations. An attempt to define improvement in bond-linkage at the interconnecting nodes of the fabric reinforced earth stracture due to the confining stress is further made. The proposed method of analysis has been applied to estimate the maximum tensions, deformations and strains of the fabric reinforcements. The results are then compared with those of finite element analysis and experimental tests, and show in general good agreements indicating the effectiveness of the proposed method of analysis. Analytical parametric studies are also carried out to investigate the effects of relative soil-fabric reinforcement stiffness, locked-in stresses, compaction load and seepage pressures on the magnitude and variation of the fabric deformations.

  • PDF

Poly(vinyl alcohol)의 합성과 유변학적 성질

  • Lee, Jeong Kyung;Lee, Hyang Aee;Kim, Keyn Gyi
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.6
    • /
    • pp.555-561
    • /
    • 2001
  • Vinyl acetate usually used in PVA resin preparation was converted to PVAc by bulk polymerization using AIBN as a initiator and PVA was synthesized by changing the concentration of NaOH added for saponification subsequently. As a result of estimating molecular weight using GPC, molecular weight increased as the NaOH concentration increased to 2.5 N, 5.0 N, 7.5 N and 10.0 N and polydispersity had similar values of 2.1~2.3, however, showed slightly decreasing tendency. In addition, PVA saponificated by 10.0 N-NaOH showed high syndiotacticity in observation of tacticity using NMR spectroscopy. From this fact, the degree of tacticity was predicted to be high and it was in good agreement with the tendency of polydispersity by GPC. Also, from the result of FT-IR spectroscopy, it might be known that hydrolysis was more promoted in the PVA with 10.0 N-NaOH than other NaOH concentration. Intrinsic viscosity measured using Ubbelohde viscometer, which increased as the concentration of NaOH added for saponification increased. The change of shear strength with the change of shear rate was investigated using Brookfield viscometer, in consequence, viscosity of PVA synthesized decreased as shear rate increased. PVA solution confirmed to show the shear thining behavior by Casson plot and PVA with 10.0 N-NaOH had the largest yield value. DSC measurement was performed to know the thermal properties of PVA. Tp had nearly constant value of 214$^{\circ}C$ in all cases except for adding 2.5 N-NaOH and $\Delta$H was increased as the concentration of NaOH increased. From this properties, it was concluded that the degree of hydrogen bonding was proportional to the added concentration of NaOH and the increase of the degree of hydrogen bonding and hydrophobic interaction could affect the rheological and thermal properties of title compound.

  • PDF

Performance of Direct Seeded Rice in Ridged Dry Soil at Different Seeding Methods and Seeding Rates (벼 건답휴립직파재배에서 파종양식과 파종량에 따른 생육과 수량)

  • 이석순;백준호;김태주
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.6
    • /
    • pp.514-520
    • /
    • 1992
  • Performance of direct seeded paddy rice in ridged dry soil was evaluated at different seeding methods (broadcasting, drilling, and seeding in group) and seeding rates (4, 6, and 8kg /10a). The number of maximum tillers at broadcasting and drilling of seeds was higher than that at seeding in group. At broadcasing and drilling the number of maximum tillers at seeding rate of 6kg /10a was greater than that at 4 or 8kg /10a, but at seeding in group the number of maximum tillers increased with seeding rates. Among the seeding methods there were no differences in the number of seedlings per unit area, culm and panicle lengths, and productive tiller ratio, but heading date at seeding in group was delayed by a day compared with broadcasting or drilling. At heading stage leaf area index(LAI) and dry matter production at broadcasting of seeds were higher compared with drilling and seeding in group, but light transmission ratio at drilling and seeding in group was higher than that at broadcasting of seeds. Although the number of seedlings increased with seeding rates, LAI and dry matter production at heading stage, culm and panicle lengths, and productive tiller ratio were not different among the seeding rates. There were no differences in the number of panicles and spikelets per unit area, 1,000 grain weight, yield, and harvest index among the seeding methods. The number of spikelets per panicle at seeding in group was higher, but percent ripened grains was lower compared with broadcasting and drilling. There were no significant differences in the number of panicles and spikelets per panicle and unit area, percent ripened grains, and harvest index among the seeding rates, but yield at seeding rate of 6kg /10a was higher than at 4 or 8kg /10a. There were no significant differences in tiller length, bending moment, and fresh weight of tiller among the seeding methods. Breaking strength was lower in the order of seeding in group, drilling, and broadcasting of seeds. However, lodging index was similar among the seeding rates and lodging was not occurred in the field. There was a significant interaction in the cellulose, hemicellulose, and lignin contents of culm base between seeding methods and seeding rates.

  • PDF

A Study on Trust Transfer in Traditional Fintech of Smart Banking (핀테크 서비스에서 오프라인에서 온라인으로의 신뢰전이에 관한 연구 - 스마트뱅킹을 중심으로 -)

  • Ai, Di;Kwon, Sun-Dong;Lee, Su-Chul;Ko, Mi-Hyun;Lee, Bo-Hyung
    • Management & Information Systems Review
    • /
    • v.36 no.3
    • /
    • pp.167-184
    • /
    • 2017
  • In this study, we investigated the effect of offline banking trust on smart banking trust. As influencing factors of smart banking trust, this study compared offline banking trust, smart banking's system quality, and information quality. For the empirical study, 186 questionnaire data were collected from smart banking users and the data were analyzed using Smart-PLS 2.0. As results, it was verified that there is trust transfer in FinTech service, by the significant effect of offline banking trust on smart banking trust. And it was proved that the effect of offline banking trust on smart banking trust is lower than that of smart banking itself. The contribution of this study can be seen in both academic and industrial aspects. First, it is the contribution of the academic aspect. Previous studies on banking were focused on either offline banking or smart banking. But this study, focus on the relationship between offline banking and online banking, proved that offline banking trust affects smart banking trust. Next, it is the industrial contribution. This study showed that offline banking characteristics of traditional commercial banks affect the trust of emerging smart banking service. This means that the emerging FinTech companies are not advantageous in the competition of trust building compared to traditional commercial banks. Unlike traditional commercial banks, the emerging FinTech is innovating the convenience of customers by arming them with new technologies such as mobile Internet, social network, cloud technology, and big data. However, these FinTech strengths alone can not guarantee sufficient trust needed for financial transactions, because banking customers do not change a habit or an inertia that they already have during using traditional banks. Therefore, emerging FinTech companies should strive to create destructive value that reflects the connection with various Internet services and the strength of online interaction such as social services, which have an advantage over customer contacts. And emerging FinTech companies should strive to build service trust, focused on young people with low resistance to new services.

  • PDF

A Study on Pullout-Resistance Increase in Soil Nailing due to Pressurized Grouting (가압 그라우팅 쏘일네일링의 인발저항력 증가 원인에 관한 연구)

  • Jeong, Kyeong-Han;Park, Sung-Won;Choi, Hang-Seok;Lee, Chung-Won;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.101-114
    • /
    • 2008
  • Pressurized grouting is a common technique in geotechnical engineering applications to increase the stiffness and strength of the ground mass and to fill boreholes or void space in a tunnel lining and so on. Recently, the pressurized grouting has been applied to a soil-nailing system which is widely used to improve slope stability. Because interaction between pressurized grouting paste and adjacent ground mass is complicated and difficult to analyze, the soil-nailing design has been empirically performed in most geotechnical applications. The purpose of this study is to analyze the ground behavior induced by pressurized grouting paste with the aid of laboratory model tests. The laboratory tests are carried out for four kinds of granitic residual soils. When injecting pressure is applied to grout, the pressure measured in the adjacent ground initially increases for a while, which behaves in the way of the membrane model. With the lapse of time, the pressure in the adjacent ground decreases down to a value of residual stress because a portion of water in the grouting paste seeps into the adjacent ground. The seepage can be indicated by the fact that the ratio of water/cement in the grouting paste has decreased from a initial value of 50% to around 30% during the test. The reduction of the W/C ratio should cause to harden the grouting paste and increase the stiffness of it, which restricts the rebound of out-moved ground into the original position, and thus increase the in-situ stress by approximately 20% of the injecting pressures. The measured radial deformation of the ground under pressure is in good agreement with the expansion of a cylindrical cavity estimated by the cavity expansion theory. In-situ test revealed that the pullout resistance of a soil nailing with pressurized grouting is about 36% larger than that with regular grouting, caused by grout radius increase, residual stress effect, and/or roughness increase.

Study on the Mechanical Stability of Red Mud Catalysts for HFC-134a Hydrolysis Reaction (HFC-134a 가수분해를 위한 Red mud 촉매 기계적 안정성 향상에 관한 연구)

  • In-Heon Kwak;Eun-Han Lee;Sung-Chan Nam;Jung-Bae Kim;Shin-Kun Ryi
    • Clean Technology
    • /
    • v.30 no.2
    • /
    • pp.134-144
    • /
    • 2024
  • In this study, the mechanical stability of red mud was improved for its commercial use as a catalyst to effectively decompose HFC-134a, one of the seven major greenhouse gases. Red mud is an industrial waste discharged from aluminum production, but it can be used for the decomposition of HFC-134a. Red mud can be manufactured into a catalyst via the crushing-preparative-compression molding-firing process, and it is possible to improve the catalyst performance and secure mechanical stability through calcination. In order to determine the optimal heat treatment conditions, pellet-shaped compressed red mud samples were calcined at 300, 600, 800 ℃ using a muffle furnace for 5 hours. The mechanical stability was confirmed by the weight loss rate before and after ultra-sonication after the catalyst was immersed in distilled water. The catalyst calcined at 800 ℃ (RM 800) was found to have the best mechanical stability as well as the most catalytic activity. The catalyst performance and durability tests that were performed for 100 hours using the RM 800 catalyst showed thatmore than 99% of 1 mol% HFC-134a was degraded at 650 ℃, and no degradation in catalytic activity was observed. XRD analysis showed tri-calcium aluminate and gehlenite crystalline phases, which enhance mechanical strength and catalytic activity due to the interaction of Ca, Si, and Al after heat treatment at 800 ℃. SEM/EDS analysis of the durability tested catalysts showed no losses in active substances or shape changes due to HFC-134a abasement. Through this research, it is expected that red mud can be commercialized as a catalyst for waste refrigerant treatment due to its high economic feasibility, high decomposition efficiency and mechanical stability.

A STUDY ON THE IONOSPHERE AND THERMOSPHERE INTERACTION BASED ON NCAR-TIEGCM: DEPENDENCE OF THE INTERPLANETARY MAGNETIC FIELD (IMF) ON THE MOMENTUM FORCING IN THE HIGH-LATITUDE LOWER THERMOSPHERE (NCAR-TIEGCM을 이용한 이온권과 열권의 상호작용 연구: 행성간 자기장(IMF)에 따른 고위도 하부 열권의 운동량 강제에 대한 연구)

  • Kwak, Young-Sil;Richmond, Arthur D.;Ahn, Byung-Ho;Won, Young-In
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.2
    • /
    • pp.147-174
    • /
    • 2005
  • To understand the physical processes that control the high-latitude lower thermospheric dynamics, we quantify the forces that are mainly responsible for maintaining the high-latitude lower thermospheric wind system with the aid of the National Center for Atmospheric Research Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM). Momentum forcing is statistically analyzed in magnetic coordinates, and its behavior with respect to the magnitude and orientation of the interplanetary magnetic field (IMF) is further examined. By subtracting the values with zero IMF from those with non-zero IMF, we obtained the difference winds and forces in the high-latitude 1ower thermosphere(<180 km). They show a simple structure over the polar cap and auroral regions for positive($B_y$ > 0.8|$\overline{B}_z$ |) or negative($B_y$ < -0.8|$\overline{B}_z$|) IMF-$\overline{B}_y$ conditions, with maximum values appearing around -80$^{\circ}$ magnetic latitude. Difference winds and difference forces for negative and positive $\overline{B}_y$ have an opposite sign and similar strength each other. For positive($B_z$ > 0.3125|$\overline{B}_y$|) or negative($B_z$ < -0.3125|$\overline{B}_y$|) IMF-$\overline{B}_z$ conditions the difference winds and difference forces are noted to subauroral latitudes. Difference winds and difference forces for negative $\overline{B}_z$ have an opposite sign to positive $\overline{B}_z$ condition. Those for negative $\overline{B}_z$ are stronger than those for positive indicating that negative $\overline{B}_z$ has a stronger effect on the winds and momentum forces than does positive $\overline{B}_z$ At higher altitudes(>125 km) the primary forces that determine the variations of tile neutral winds are the pressure gradient, Coriolis and rotational Pedersen ion drag forces; however, at various locations and times significant contributions can be made by the horizontal advection force. On the other hand, at lower altitudes(108-125 km) the pressure gradient, Coriolis and non-rotational Hall ion drag forces determine the variations of the neutral winds. At lower altitudes(<108 km) it tends to generate a geostrophic motion with the balance between the pressure gradient and Coriolis forces. The northward component of IMF By-dependent average momentum forces act more significantly on the neutral motion except for the ion drag. At lower altitudes(108-425 km) for negative IMF-$\overline{B}_y$ condition the ion drag force tends to generate a warm clockwise circulation with downward vertical motion associated with the adiabatic compress heating in the polar cap region. For positive IMF-$\overline{B}_y$ condition it tends to generate a cold anticlockwise circulation with upward vertical motion associated with the adiabatic expansion cooling in the polar cap region. For negative IMF-$\overline{B}_z$ the ion drag force tends to generate a cold anticlockwise circulation with upward vertical motion in the dawn sector. For positive IMF-$\overline{B}_z$ it tends to generate a warm clockwise circulation with downward vertical motion in the dawn sector.