• Title/Summary/Keyword: interaction strength

Search Result 1,044, Processing Time 0.031 seconds

Numerical Study on Lateral Pile Behaviors of Piled Gravity Base Foundations for Offshore Wind Turbine (수치해석을 통한 해상풍력 말뚝지지중력식기초의 수평거동 분석)

  • Seo, Ji-Hoon;Choo, Yun Wook;Goo, Jeong-Min;Kim, Youngho;Park, Jae Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.11
    • /
    • pp.5-19
    • /
    • 2016
  • This paper presents the results from three-dimensional finite element (FE) analysis undertaken to provide insight into the lateral behaviors of piled gravity base foundation (GBF) for offshore wind turbine. The piled GBF was originally developed to support the gravity based foundation in very soft clay soil. A GBF is supported by five piles in a cross arrangement to achieve additional vertical bearing capacity. This study considered four different cases including a) single pile, b) three-by-three group pile (with nine piles), c) cross-arrangement group pile (with five piles), and d) piled GBF. All the cases were installed in homogenous soft clay soil with undrained shear strength of 20 kPa. From the numerical results, p-y curves and thus P-multiplier was back-calculated. For the group pile cases, the group effect decreased with increasing the number of piles. Interestingly, for the piled GBF, the P-multipliers showed a unique trend, compared to the group pile cases. This study concluded that the global lateral behaviour of the piled GBF was influenced strongly by the interaction between GBF and contacted soil surface.

Impacts of wave and tidal forcing on 3D nearshore processes on natural beaches. Part I: Flow and turbulence fields

  • Bakhtyar, R.;Dastgheib, A.;Roelvink, D.;Barry, D.A.
    • Ocean Systems Engineering
    • /
    • v.6 no.1
    • /
    • pp.23-60
    • /
    • 2016
  • The major objective of this study was to develop further understanding of 3D nearshore hydrodynamics under a variety of wave and tidal forcing conditions. The main tool used was a comprehensive 3D numerical model - combining the flow module of Delft3D with the WAVE solver of XBeach - of nearshore hydro- and morphodynamics that can simulate flow, sediment transport, and morphological evolution. Surf-swash zone hydrodynamics were modeled using the 3D Navier-Stokes equations, combined with various turbulence models (${\kappa}-{\varepsilon}$, ${\kappa}-L$, ATM and H-LES). Sediment transport and resulting foreshore profile changes were approximated using different sediment transport relations that consider both bed- and suspended-load transport of non-cohesive sediments. The numerical set-up was tested against field data, with good agreement found. Different numerical experiments under a range of bed characteristics and incident wave and tidal conditions were run to test the model's capability to reproduce 3D flow, wave propagation, sediment transport and morphodynamics in the nearshore at the field scale. The results were interpreted according to existing understanding of surf and swash zone processes. Our numerical experiments confirm that the angle between the crest line of the approaching wave and the shoreline defines the direction and strength of the longshore current, while the longshore current velocity varies across the nearshore zone. The model simulates the undertow, hydraulic cell and rip-current patterns generated by radiation stresses and longshore variability in wave heights. Numerical results show that a non-uniform seabed is crucial for generation of rip currents in the nearshore (when bed slope is uniform, rips are not generated). Increasing the wave height increases the peaks of eddy viscosity and TKE (turbulent kinetic energy), while increasing the tidal amplitude reduces these peaks. Wave and tide interaction has most striking effects on the foreshore profile with the formation of the intertidal bar. High values of eddy viscosity, TKE and wave set-up are spread offshore for coarser grain sizes. Beach profile steepness modifies the nearshore circulation pattern, significantly enhancing the vertical component of the flow. The local recirculation within the longshore current in the inshore region causes a transient offshore shift and strengthening of the longshore current. Overall, the analysis shows that, with reasonable hypotheses, it is possible to simulate the nearshore hydrodynamics subjected to oceanic forcing, consistent with existing understanding of this area. Part II of this work presents 3D nearshore morphodynamics induced by the tides and waves.

Structure and Reactivity of Alkylchloroformates. MO Theoretical Interpretations on Halide Exchange Reaction (염화 포름산 알킬의 구조와 반응성. 할로겐화 이온 교환반응에 대한 분자궤도론적 고찰)

  • Lee, Bon Su;Lee, Ik Choon
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.4
    • /
    • pp.223-238
    • /
    • 1974
  • CNDO/2 MO theoretical studies and kinetic studies of halide exchange reactions for alkylchloroformates have been carried out in order to investigate structure-reactivity relationship of alkylchloroformates. From the result of energetics, it was concluded that the most stable configuration of alkylchloroformate is that in which alkyl group and chlorine are trans to each other, and that the hindered rotation about the bond between the carbonyl carbon and alkoxy-oxygen bond is attributed to the ${\pi}-$electron delocalization. It has been found that the large charge separation is due to -M effect of carbonyl and alkoxy oxygens and-I effect of chlorine. The order of rates in solvents studied was $(CH_3)_2 > CO > CH_3CN{\gg}MeOH.$$I^->Br^->Cl^-$ in protic solvent, and of Cl^->Br^- >I^-$ in dipolar aprotic solvents. Alkyl group contribution has the decreasing order of $CH_3-> C_2H-{\gg}i-C_3H_7-.$ The solvent effect has been interpreted on the basis of initial and final state contribution. A transition state model has been suggested, and it has been proposed that the most favorable mechanism is the addition-elimination. From the results of activation parameters and electronic properties, an energy profile has been proposed. Structural factors determining reactivities of alkylchloroformates have been shown to be charge, energy level of ${\alpha}^*LUMO$ to C-Cl bond and ${\alpha}^{\ast} $antibonding strength with respect to C-Cl bond in this MO. Charge and polarizability of nucleophile, and the interaction of these effects with solvent structures are also found to be important.

  • PDF

A Numerical Study of Tumble Effect on Spray/wall Impingement in the D. I. Engines (직접분사식 엔진내의 분무/벽 충돌 현상에서 텀블 효과에 관한 연구)

  • Chae, Soo;Yang, Hyup;Ryou, Su-Yeal;Ryou, Hong-Sun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.45-57
    • /
    • 2002
  • In this paper, the results gained by applying many impingement models to the cylinder and flat plate were analyzed in comparison with the experimental data to study a spray/wall interaction phenomena. To begin with, the behavior of spray injected normal to the wall was analysed using three different impingement models ; Naber and Reitz model(NR model), Watkins and Wang model(WW model) and Park and Watkins model(PW model) in the present calculation. The results obtained from these models were compared with experimental data of Katsura et. al. The results indicated that PW model was in better agreement with experimental data than the NR and WW model. Also f3r spray injected at 30DEG , the result of three models were compared with experimental data of Fujimoto et. al. The results showed that m model overpredicted the penetration in the radial direction because this model was based on the inviscid jet analogy. WW model did not predicted the radius and height of the wall spray effectively. It might be thought that this discrepancy was due to the lack of consideration of spray film velocity occurred at impingement site. The result of PW model agrees with the experimental data as time goes on. In particular, a height of the spray droplets was predicted more closely to the experimental data than the other two models. The results of PW model in which the spray droplets were distributed densely around the edge of droplet distribution shaped in a circle had an agreement with the experimental data of Fujimoto et. al. Therefore, it was concluded that PW model performed better than M and WW model for prediction of spray behavior. The numerical calculation using PW model performed to the cylinder similar to the real shape of DI engine. The results showed that vortex strength near the wall in the cylinder was stronger than that in the case of flat plate. Contrary to the flat plat, an existence of the side wall in the cylinder caused the tangential velocity component to be reduced and the normal velocity component to be increased. The flow tends to rotate to the inside of cylinder going upward to the right side wall of cylinder gradually as time passes. Also, the results showed that as the spray angle increases, the gas velocity distribution and the tumble flow seemed to be formed widely.

Railway Governance and Power Structure in China

  • Lee, Jinjing
    • International Journal of Railway
    • /
    • v.1 no.4
    • /
    • pp.129-133
    • /
    • 2008
  • Over the last $15{\sim}20$years, many countries have adopted policies of railway privatization to keep up with increasing competition from road and air transport. Although each country and case has its own history, market characteristics, political context as well as administrative process, railway privatizations (including railway restructure, concession etc.) in the west usually are accompanied with the establishment of new regulatory regimes. Therefore, railway governance has been innovating towards an interaction of government, regulator, industry bodies, user groups, trade unions and other interested groups within the regulatory framework. However, it is not the case in China. Although China had seen a partial privatization in some branch lines and is experiencing a much larger-scale privatization by establishing joint-ventures to build and operate high-speed passenger lines and implementing an asset-based securitization program, administrative control still occupies absolutely dominant position in the railway governance in China. Ministry of Railway (MOR) acts as the administrator, operator as well as regulator. There is no national policy that clearly positions railway in the transportation network and clarifies the role of government in railway development. There is also little participation from interested groups in the railway policy making, pricing, service standard or safety matter. Railway in China is solely governed by the mere executive agency. Efficiency-focused economic perspective explanation is far from satisfaction. A wider research perspective from political and social regime is of great potential to better explain and solve the problem. In the west, separation and constrains of power had long been established as a fundamental rule. In addition to internal separation of political power(legislation, execution and jurisdiction), rise of corporation in the 19th century and association revolution in the 20th century greatly fostered the growth of economic and social power. Therefore, political, social and economic organizations cooperate and compete with each other, which leads to a balanced and resonable power structure. While in China, political power, mainly party-controlled administrative power has been keeping a dominated position since the time of plan economy. Although the economic reform promoted the growth of economic power of enterprises, it is still not strong enough to compete with political power. Furthermore, under rigid political control, social organizations usually are affiliated to government, independent social power is still too weak to function. So, duo to the limited and slow reform in political and social regime in China, there is an unbalanced power structure within which political power is dominant, economic power expanding while social power still absent. Totally different power structure in China determines the fundamental institutional environment of her railway privatization and governance. It is expected that the exploration of who act behind railway governance and their acting strength (a power theory) will present us a better picture of railway governance as a relevant transportation mode. The paper first examines the railway governance in China and preliminarily establishes a linkage between railway governance and its fundamental institutional environment, i.e. power structure in a specific country. Secondly, the reason why there is no national policy in China is explored in the view of political power. In China, legislative power is more symbolic while party-controlled administrative power dominates political process and plays a fundamental role in Chinese railway governance. And then, in the part three railway finance reform is analyzed in the view of economic power, esp. the relationship of political power and economic power.

  • PDF

Studies on Thermal and Dynamic Viscoelastic Behaviors of Multiwalled Carbon Nanotubes-reinforced Epoxy Matrix Composites (다중벽 탄소나노튜브강화 에폭시 매트릭스 복합재료의 열적 및 동적 점탄성 거동 연구)

  • Seo, Min-Kang;Park, Soo-Jin
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.401-406
    • /
    • 2005
  • In this work, the effect of chemical treatment of multiwalled carbon nanotubes (MWNTs) on glass transition temperature (Tg), thermal stability, and dynamic viscoelastic behaviors of MWNTs-reinforced epoxy matrix composites has been studied by differencial scanning calorimeter (DSC), thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA) measurements. The MWNTs were chemically treated with 35 wt% $H_3PO_4$ (A-MWNTs) or 35 wt% KOH (B-MWNTs) solutions and the changes of surface properties of chemically treated MWNTs were examined by pH, acid and base values, Fourier transfer-infrared spectroscopy (FT-IR), and x-ray photoelectron spectroscopy (XPS) analyses. The chemical treatments based on acid and base reactions led to a significant change of surface characteristics and chemical compositions of the MWNTs, especially A-MWNTs/epoxy composites had higher thermal stability and dynamic viscoelastic properties than those of B-MWNTs and non-treated MWNTs/epoxy composites. These results were probably due to the improvement of interfacial bonding strength, resulting from the acid-base interaction and hydrogen bonding between the epoxy resins and the MWNT fillers.

Thermal Degradation of Thermoplastic Polyurethane Modified with Polycarbonate (열가소성 폴리우레탄으로 개질된 폴리카보네이트에서 TPU의 열분해)

  • 권회진;차윤종;최순자
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.314-325
    • /
    • 2000
  • Thermal degradation of thermoplasitc polyurethane modified polycarbonate has been investigated by means of DSC, GPC and FT-IR techniques. The polyurethanes used in this study are TPU-35 and TPU-53 containing 35.5 and 53.4 wt% of hard segments, respectively. The more content of hard segment, the higher the glass transition temperature (T$_{g}$) of TPU was observed. On the other hand, the T$_{g}$ of the TPU modified PC decreased with the content of TPU and the annealing temperature regardless of the hard segment contents. The latter behavior nay arise from the thermal degradation of TPU upon annealing process: the observed thermal degradation temperatures were at 240 and 25$0^{\circ}C$ for the PC/TPU-35 and PC/TPU-53, respectively. The molecular weight, molecular weight distribution and viscosity agree well with the DSC measurement, which implicates a thermal degradation of TPU. In addition, thermal stability of the TPU modified PC linearly decreased with an incorporation of TPU. Transesterification or any interaction was not observed using FT-IR: the evidence was no frequency shift or any variance betwere the carbonyl stretching and NH group. For the specimens prepared below the degradation temperature, the enhancement of the thickness dependent impact strength of the PC/TPU blend was observed, and the morphology of the two blends was compared.d.

  • PDF

Synthesis of Surface Crosslinked Poly(sodium acrylate) for Delayed Absorption in Cement Solution (시멘트 수용액에서 흡수 지연을 위한 Crosslinked Poly(sodium acrylate)의 표면 가교)

  • Hwang, Ki-Seob;Jang, Seok-Soo;Jung, Yong-Wook;Lee, Seung-Han;Ha, Ki-Ryong
    • Polymer(Korea)
    • /
    • v.35 no.4
    • /
    • pp.363-369
    • /
    • 2011
  • To study the effect of incorporation of a surface crosslinking layer on a crosslinked poly (sodium acrylate) (cPSA) absorbent with ethylene glycol dimethacrylate CEGDMA), we synthesized several surface crosslinked cPSAs with EGDMA by an inverse emulsion polymerization method to delay the absorption of excess water in concrete, Liquid paraffin was used as a continuous phase. cPSA was synthesized with acrylic acid (AA) neutralized with aqueous 8 M sodium hydroxide solution as a monomer, N,N-methylene bisacrylamide (MBA) as crosslinking agent and ammonium persulfate (APS) and sodium metabisulfite (SMBS) as a redox initiator system by inverse emulsion polymerization. FTIR spectroscopy was used to characterize $Ca^{2+}$ ion interaction with cPSA and cPSA-EGDMAs. The swelling ratios of synthesized absorbents were evaluated from the absorption in deionized water, cement saturated aqueous solution and aqueous solution of calcium hydroxide (pH 12). Equilibrium swelling times for cPSA and surface crosslinked cPSA with EGDMA were 2 and 3 hrs, respectively. We also observed an increase in setting time of the cement and an increase in the compressive strength of mortar by addition of the synthesized cPSA-EGDMA.

Development of Numerical Method for Large Deformation of Soil Using Particle Method (입자법을 이용한 토사의 대변형 해석법 개발)

  • Park, Sung-Sik;Lee, Do-Hyun;Kwon, Min-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.12
    • /
    • pp.35-44
    • /
    • 2013
  • In this study, a particle method without using grid was applied for analysing large deformation problems in soil flows instead of using ordinary finite element or finite difference methods. In the particle method, a continuum equation was discretized by various particle interaction models corresponding to differential operators such as gradient, divergence, and Laplacian. Soil behavior changes from solid to liquid state with increasing water content or external load. The Mohr-Coulomb failure criterion was incorporated into the particle method to analyze such three-dimensional soil behavior. The yielding and hardening behavior of soil before failure was analyzed by treating soil as a viscous liquid. First of all, a sand column test without confining pressure and strength was carried out and then a self-standing clay column test with cohesion was carried out. Large deformation from such column tests due to soil yielding or failure was used for verifying the developed particle method. The developed particle method was able to simulate the three-dimensional plastic deformation of soils due to yielding before failure and calculate the variation of normal and shear stresses both in sand and clay columns.

Endogenous enzyme activities and tibia bone development of broiler chickens fed wheat-based diets supplemented with xylanase, β-glucanase and phytase

  • Al-Qahtani, Mohammed;Ahiwe, Emmanuel Uchenna;Abdallh, Medani Eldow;Chang'a, Edwin Peter;Gausi, Harriet;Bedford, Michael R;Iji, Paul Ade
    • Animal Bioscience
    • /
    • v.34 no.6
    • /
    • pp.1049-1060
    • /
    • 2021
  • Objective: This study assessed the effect of different levels of xylanase, β-glucanase and phytase on intestinal enzyme activities and tibia bone development in broiler chickens fed wheat-based diets. Methods: Twelve experimental diets were formulated using a 3×2×2 factorial design (three doses of phytase and two doses of both xylanase and β-glucanase) and offered to 648 day-old Ross 308 male chicks having 6 replicates groups with 9 birds per replicate and lasted for 35 days. Results: An interaction between the enzymes products improved (p<0.01) the activity of chymotrypsin. Protein content at d 10 was highest (p<0.001) with addition of phytase while general proteolytic activity (GPA) (p<0.02) and lipase activity (p<0.001) were decreased. At d 24, there were improvements in protein content (p<0.01) and lipase (p<0.04) with supplementation of superdose phytase. Addition of superdose phytase decreased in chymotrypsin (p<0.02), trypsin (p<0.01) and GPA (p<0.001). The optimum dose of xylanase decreased the chymotrypsin activity (p = 0.05), while the GPA (p<0.001) was increased with the optimum level of β-glucanase. Superdose phytase supplementation at d 10 improved maltase (p = 0.05), sucrase (p<0.001) and alkaline phosphatase (p<0.001) activities in the jejunum while aminopeptidase activity was highest (p<0.005) with the low level of phytase. Protein content of jejunum mucosa was bigger (p<0.001) in birds fed superdose phytase while maltase activity (p<0.001) at d 24 was reduced by this treatment. Sucrase (p<0.04) and aminopeptidase activities (p<0.001) improved when diets supplemented with low levels of phytase. Tibia bone breaking strength was highest (p<0.04) with addition of low level of superdose phytase or optimum level of β-glucanase. Bone dry matter content decreased (p<0.04) when diets supplemented with phytase. Conclusion: From the results obtained in this study, supplementation of superdose phytase was the most effective, however, the cost-benefit analysis of the use of such a dose needs to be evaluated.