• 제목/요약/키워드: interaction protein

검색결과 1,627건 처리시간 0.025초

초생추에서의 납의 독성과 철·구리·아연 및 단백질과의 상호작용 (Effects of Over-dosed Lead and its Interaction with Iron, Copper, Zinc or Protein Supplement in Chicks)

  • 박전홍;김춘수
    • 대한수의학회지
    • /
    • 제24권1호
    • /
    • pp.24-30
    • /
    • 1984
  • The protective effects of high levels of dietary iron, copper, zinc or protein on lead toxicity were studied In chicks. Growth retardation, reduction of feed intake, anemia and accumulation of lead in the bone and kidney were observed in chicks fed a diet containing 500mg lead as chloride per kg of feed for 42 days. Early changes due to ingested lead were inhibition of red blood cell ${\delta}$-aminolevulinic acid dehydrase at all doses and no effect of iron, copper, zinc or protein addition were observed. Tibia lead accumulation was reduced in chicks receiving additional dietary iron or zinc compared to the lead only group but increased in chicks given supplementary protein. Decreased body weight gain was overcome by supplementary zinc or protein in chicks fed lead but not by supplementary iron. Overall the results of this study show that lead poisoning can be partly reduced by providing supplementary iron, zinc or protein, but the interaction of these element remained to be elucidated.

  • PDF

Protein-protein Interaction Analysis of Glucagon-like Peptide-2 Receptor with Its Native Ligand Glucagon-like Peptide-2

  • Nagarajan, Santhosh Kumar
    • 통합자연과학논문집
    • /
    • 제10권3호
    • /
    • pp.125-130
    • /
    • 2017
  • Glucagon like pepide-2, one of the GLPs, is involved in various metabolic functions in the gastrointestinal tract. It plays a major role in the regulation of mucosal epithelium and the intestinal crypt cell proliferation. Because of their therapeutic importance towards the diseases in the gastrointestinal tract, it becomes necessary to study their interaction with its receptor, GLP-2R. In this study, we have developed protein-protein docking complexes of GLP-2 - GLP-2 receptor. Homology models of GLP-2 are developed, and a reliable model out of the predicted models was selected after model validation. The model was bound with the receptor, to study the important interactions of the complex. This study could be useful in developing novel and potent drugs for the diseases related with GLP-2.

The PPLA Motif of Glycogen Synthase Kinase 3β Is Required for Interaction with Fe65

  • Lee, Eun Jeoung;Hyun, Sunghee;Chun, Jaesun;Shin, Sung Hwa;Lee, Kyung Eun;Yeon, Kwang Hum;Park, Tae Yoon;Kang, Sang Sun
    • Molecules and Cells
    • /
    • 제26권1호
    • /
    • pp.100-105
    • /
    • 2008
  • Glycogen synthase kinase $3{\beta}$ (GSK $3{\beta}$) is a serine/threonine kinase that phosphorylates substrates such as ${\beta}$-catenin and is involved in a variety of biological processes, including embryonic development, metabolism, tumorigenesis, and cell death. Here, we present evidence that human GSK $3{\beta}$ is associated with Fe65, which has the characteristics of an adaptor protein, possessing a WW domain, and two phosphotyrosine interaction domains, PID1 and PID2. The GSK $3{\beta}$ catalytic domain also contains a putative WW domain binding motif ($^{371}PPLA^{374}$), and we observed, using a pull down approach and co-immunoprecipitation, that it interacts physically with Fe65 via this motif. In addition, we detected co-localization of GSK $3{\beta}$ and Fe65 by confocal microscopy, and this co-localization was disrupted by mutation of the putative WW domain binding motif of GSK $3{\beta}$. Finally, in transient transfection assays interaction of GSK $3{\beta}$ (wt) with Fe65 induced substantial cell apoptosis, whereas interaction with the GSK $3{\beta}$ AALA mutant ($^{371}AALA^{374}$) did not, and we noted that phosphorylation of the Tyr 216 residue of the GSK $3{\beta}$ AALA mutant was significantly reduced compared to that of GSK $3{\beta}$ wild type. Thus, our observations indicate that GSK $3{\beta}$ binds to Fe65 through its $^{371}PPLA^{374}$ motif and that this interaction regulates apoptosis and phosphorylation of Tyr 216 of GSK $3{\beta}$.

Hydrophobicity of Amino Acids in Protein Context

  • Cho, Hanul;Chong, Song-Ho;Ham, Sihyun
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제3회(2014년)
    • /
    • pp.103-113
    • /
    • 2014
  • Hydrophobicity is the key concept to understand the role of water in protein folding, protein self-assembly, and protein-ligand interaction. Conventionally, hydrophobicity of amino acids in a protein has been argued based on hydrophobicity scales determined for individual free amino acids, assuming that those scales are unaltered when amino acids are embedded in a protein. Here, we investigate how the hydrophobicity of constituent amino acids depends on the protein context, in particular, on the total charge and secondary structures of a protein. To this end, we compute and analyze the hydration free energy - free energy change upon hydration quantifying the hydrophobicity - of three short proteins based on the integral-equation theory of liquids. We find that the hydration free energy of charged amino acids is significantly affected by the protein total charge and exhibits contrasting behavior depending on the protein net charge being positive or negative. We also observe that amino acids in the central ${\beta}$-strand sandwiched by ${\beta}$-sheets display more enhanced hydrophobicity than free amino acids, whereas those in the ${\alpha}$-helix do not clearly show such a tendency. Our results provide novel insights into the hydrophobicity of amino acids, and will be valuable for rationalizing and predicting the strength of water-mediated interaction involved in the biological activity of proteins.

  • PDF

Conformational Change of Escherichia coli Signal Recognition Particle Ffh Is Affected by the Functionality of Signal Peptides of Ribose-Binding Protein

  • Ahn, Taeho;Ko, Ju Hee;Cho, Eun Yi;Yun, Chul-Ho
    • Molecules and Cells
    • /
    • 제27권6호
    • /
    • pp.681-687
    • /
    • 2009
  • We examined the effects of synthetic signal peptides, wild-type (WT) and export-defective mutant (MT) of ribose-binding protein, on the conformational changes of signal recognition particle 54 homologue (Ffh) in Escherichia coli. Upon interaction of Ffh with WT peptide, the intrinsic Tyr fluorescence, the transition temperature of thermal unfolding, and the GTPase activity of Ffh decreased in a peptide concentration-dependent manner, while the emission intensity of 8-anilinonaphthalene-1-sulfonic acid increased. In contrast, the secondary structure of the protein was not affected. Additionally, polarization of fluorescein-labeled WT increased upon association with Ffh. These results suggest that WT peptide induces the unfolded states of Ffh. The WT-mediated conformational change of Ffh was also revealed to be important in the interaction between SecA and Ffh. However, MT had marginal effect on these conformational changes suggesting that the in vivo functionality of signal peptide is important in the interaction with Ffh and concomitant structural change of the protein.

Spectroscopic Studies on the Interaction of N-alkyl Phenothiazines with Bovine Serum Albumin

  • Seetharamappa, J.;Shaikh, S.M.T;Kamat, B.P.
    • Journal of Photoscience
    • /
    • 제12권1호
    • /
    • pp.25-32
    • /
    • 2005
  • Binding of N-Alkyl phenothiazines (NAP) to bovine serum albumin (BSA) was studied by spectroscopic methods.It was found that the phenothiazine ring common to all drugs makes major contribution to interaction. However, the nature of alkylamino group at position 10 influences the protein binding significantly. Stern-Volmer plots indicated the presence of static component in the quenching mechanism. The high magnitude of rate constant of quenching indicated that the process of energy transfer occurs by intermolecular interaction and thus the drug-binding site is in close proximity to tryptophan residues of BSA. Binding studies in presence of hydrophobic probe, 8-anilino-1-naphthalein-sulphonic acid showed that there is hydrophobic interaction between drug and the probe and they do not share common sites in BSA. Thermodynamic parameters obtained from data at different temperatures showed that the binding of NAP to BSA predominantly involve hydrophobic forces. The effects of some cations and anions common ions were investigated on NAP-BSA interactions. The CD spectrum of BSA in presence of drug showedthat binding of drug leads to change in the helicity of the protein.

  • PDF

Development of Olfactory Biosensor Using Olfactory Receptor Proteins Expressed in E. coli

  • 성종환;고휘진;박태현
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XII)
    • /
    • pp.639-642
    • /
    • 2003
  • 본 연구는 후각 수용 단백질인 ODR10를 GST와 Histidine tag를 각각 N 말단과 C 말단에 삽입한 후 두 가지의 발현 벡터에 넣어 대장균에서 발현시켰다. 부분 정제된 단백질을 QCM의 수정진동자에 코팅한 후 여러 종류의 냄새 분자와의 상호 작용을 관찰하였다. 발현양은 적었지만 QCM실험 결과 발현된 단백질이 diacetyl과 반응한다는 것을 알 수 있었다. ODR10 단백질과 diacetyl의 결합 정도는 다른 냄새 분자와 비교했을 때 $5{\sim}10$배 정도 차이가 났으며 이를 통해 후각 수용 단백질을 발현시킨 대장균 세포들을 후각센서를 개발하는데 사용할 수 있다는 것을 알 수 있었다. 또한 현재까지는 1000가지 이상 존재한다고 알려진 후각 수용 단백질들이 어떤 냄새 분자와 특이적인 결합성을 가지는지 조사하기 위해서는 복잡하고 시간이 오래 걸리는 실험을 해야 했었지만, 대장균에서 발현시키는 시스템을 통해 경제적이고 효율적으로 조사를 할 수 있게 되었다.

  • PDF

단백질-단백질 상호작용 경로 분석 알고리즘의 설계 및 구현 (Design and Implementation of the Protein to Protein Interaction Pathway Analysis Algorithms)

  • 이재권;강태호;이영훈;유재수
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2004년도 추계 종합학술대회 논문집
    • /
    • pp.511-515
    • /
    • 2004
  • Post-genome 시대에는 유전체뿐만 아니라 단백질에 대한 연구의 필요성이 증대되고 있다. 특히 단백질-단백질 상호작용 및 단백질 네트워크에 대한 연구를 기반으로 전체 생물 시스템을 분석하는 연구가 중요한 이슈로 떠오르고 있다. 기존에 생물학자들이 실험을 통해서 증명한 사실들을 논문이나 기타 매체를 통해서 공개를 하고 있다. 하지만 공개된 정보의 양이 방대하므로 생물학자들이 정보를 효율적으로 이용하지 못하는 경우가 많다. 인터넷의 발달로 하루에도 수 없이 쏟아져 나오는 연구 성과들에 쉽게 접근이 가능해졌다. 이러한 매체로부터 생물학적 의미를 가지는 정보를 효과적으로 추출하는 일이 중요하게 대두되었다. 따라서 본 연구에서는 인터넷상에 공개된 다량의 논문 및 기타정보 매체로부터 단백질-단백질 상호작용 정보를 추출한 데이터베이스로부터 단백질의 네트워크를 구성하고 단백질 네트워크를 통해서 생물학적 의미를 가지는 여러 가지 경로 분석 알고리즘을 설계하고 구현한다.

  • PDF

Effects of Proto-oncogene Protein DEK on PCAF Localization

  • Lee, In-Seon;Lee, Seok-Cheol;Lee, Jae-Hwi;Seo, Sang-Beom
    • Biomolecules & Therapeutics
    • /
    • 제15권2호
    • /
    • pp.78-82
    • /
    • 2007
  • The proto-oncogene protein DEK is a nuclear binding phosphoprotein that has been associated with various human diseases including leukemia. Histone acetylation is an important post-translational modification which plays important role in transcriptional regulation. Auto-acetylation of histone acetyltransferase PCAF results in increment of its HAT activity and facilitation of its nuclear localization. In this study, we report that DEK inhibits PCAF auto-acetylation through direct interaction. The C-terminal acidic domains of DEK are responsible for the interaction with PCAF. Using confocal microscopy, we have shown that nuclear localization of PCAF is severely inhibited by DEK. Taken together, our results suggest that DEK may be involved in various cellular signal transduction pathways accommodated by PCAF through the regulation of PCAF auto-acetylation.

A Thermodynamic Study on the Binding of Cobalt Ion with Myelin Basic Protein

  • Behbehani, G. Rezaei;Saboury, A.A.;Baghery, A. Fallah
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권4호
    • /
    • pp.736-740
    • /
    • 2008
  • The interaction of myelin basic protein (MBP) from bovine central nervous system with divalent calcium ion was studied by isothermal titration calorimetry at 27 ${^{\circ}C}$ in aqueous solution. The extended solvation model was used to reproduce the enthalpies of $Co^{2+}$-MBP interaction over the whole $Co^{2+}$ concentrations. The solvation parameters recovered from the solvation model were attributed to the structural change of MBP due to the metal ion interaction. It was found that there is a set of three identical and noninteracting binding sites for $Co^{2+}$ ions. The association equilibrium constant is 0.015 ${\mu}M^{-1}$. The molar enthalpy of binding is $\Delta$H = −14.60 kJ $mol^{-1}$.