DOI QR코드

DOI QR Code

Conformational Change of Escherichia coli Signal Recognition Particle Ffh Is Affected by the Functionality of Signal Peptides of Ribose-Binding Protein

  • Ahn, Taeho (Department of Biochemistry, College of Veterinary Medicine, Chonnam National University) ;
  • Ko, Ju Hee (Department of Biochemistry, College of Veterinary Medicine, Chonnam National University) ;
  • Cho, Eun Yi (School of Biological Sciences and Technology, Chonnam National University) ;
  • Yun, Chul-Ho (School of Biological Sciences and Technology, Chonnam National University)
  • Received : 2009.03.18
  • Accepted : 2009.05.18
  • Published : 2009.06.30

Abstract

We examined the effects of synthetic signal peptides, wild-type (WT) and export-defective mutant (MT) of ribose-binding protein, on the conformational changes of signal recognition particle 54 homologue (Ffh) in Escherichia coli. Upon interaction of Ffh with WT peptide, the intrinsic Tyr fluorescence, the transition temperature of thermal unfolding, and the GTPase activity of Ffh decreased in a peptide concentration-dependent manner, while the emission intensity of 8-anilinonaphthalene-1-sulfonic acid increased. In contrast, the secondary structure of the protein was not affected. Additionally, polarization of fluorescein-labeled WT increased upon association with Ffh. These results suggest that WT peptide induces the unfolded states of Ffh. The WT-mediated conformational change of Ffh was also revealed to be important in the interaction between SecA and Ffh. However, MT had marginal effect on these conformational changes suggesting that the in vivo functionality of signal peptide is important in the interaction with Ffh and concomitant structural change of the protein.

Keywords

Acknowledgement

Supported by : Korea Research Foundation

References

  1. Ahn, T., and Kim, H. (1996). Differential effect of precursor ribose binding protein of Escherichrichia coil and its signal peptide on the SecA penetration of lipid bilayer. J. Biol. Chem. 271, 12372-12379 https://doi.org/10.1074/jbc.271.21.12372
  2. Ahn, T., and Kim, H. (1998). Effects of nonlamellar-prone lipids on the ATPase activity of SecA bound to model membranes. J. Biol. Chem 273, 21692-21698 https://doi.org/10.1074/jbc.273.34.21692
  3. Ahn, T., Oh, D-B., Kim, H., and Park, C. (2002). The phase property of membrane phospholipids is affected by the functionality of signal peptides from theEscherichia coil ribose-binding protein. J. Biol. Chem. 277, 26157-26162 https://doi.org/10.1074/jbc.M203445200
  4. Ahn, T., Yun, C-H., and Oh, D-B. (2005). Involvement of nonlamellar-prone lipids in the stability increase of human cytochrome P450 1A2 in reconstituted membranes. Biochemistry 28, 9188-9196
  5. Ames, G.F. (1986). Bacterial periplasmic transport systems: structure, mechanism and evolution. Annu. Rev. Biochem. 55, 397-425 https://doi.org/10.1146/annurev.bi.55.070186.002145
  6. Bollinger, J., Park, C., Harayama, S., and Hazelbauer, G.L. (1984). Structure of the Trg protein: homologies with and differences from other sensory transducers of E. coil. Proc. Natl. Acad. Sci. USA 81, 3287-3291 https://doi.org/10.1073/pnas.81.11.3287
  7. Buchli, R., VanGundy, R.S., Hickman-Miller, H.D., Giberson, C.F., Bardet, W., and Hildebrand, W.H. (2004). Real-time measurement of in vitro peptide binding to soluble $HLA-A^*0201$ by fluorescence polarization. Biochemistry 43, 14852-14863 https://doi.org/10.1021/bi048580q
  8. Castell, J.V., Cervera, M., and Marco, R. (1979). A convenient micromethod for the assay of primary amines and proteins with fluorescamine: a reexamination of the conditions of reaction. Anal. Biochem. 99, 379-391 https://doi.org/10.1016/S0003-2697(79)80022-6
  9. Chi, S.W., Yi, G.S., Suh, J.Y., Choi, B.S., and Kim, H. (1995). Structures of revertant signal sequences of Escherichia coil ribose binding protein. Biophys. J. 69, 2703-2709 https://doi.org/10.1016/S0006-3495(95)80141-4
  10. Collier, D.N., Bankiatis, V., Weiss, J.B., and Bassford Jr, P.J. (1988). The antifolding activity of SecB promotes the export of the E. coil maltose-binding protein. Cell 53, 372-383
  11. de Gier, J.W., Mansournia, P., Valent, Q.A., Phillips, G.J., Luirink, J., and Heijne, G.V. (1996). Assembly of a cytoplasmic membrane protein in Escherichia coil is dependent on the signal recognition particle. FEBS Lett. 399, 307-309 https://doi.org/10.1016/S0014-5793(96)01354-3
  12. de Gier, J.W., Valent, Q.A., Heijne, G.V., and Luirink, J. (1997). The E. coil SRP: preferences of a targeting factor. FEBS Lett. 408, 1-4 https://doi.org/10.1016/S0014-5793(97)00402-X
  13. de Gier, J.W., Scotti, P.A., S$\ddot{a}$$\ddot{a}$f, A., Valent, Q.A., Kuhn, A., Luirink, J., and Heijne, G.V. (1998). Differential use of the signal recognition particle translocase targeting pathway for inner membrane protein assembly in Escherichia coil Proc. Natl. Acad. Sci. USA 95, 14646-14651 https://doi.org/10.1073/pnas.95.25.14646
  14. Driessen, A.J.M., and Nouwen, N. (2008). Protein translocation across the bacterial cytoplasmic membrane. Annu. Rev. Biochem. 77, 643-667 https://doi.org/10.1146/annurev.biochem.77.061606.160747
  15. Economou, A. (1998). Bacterial preprotein translocase: mechanism and conformational dynamics of a processive enzyme. Mol. Microbiol. 27, 511-518 https://doi.org/10.1046/j.1365-2958.1998.00713.x
  16. Furlong, C.E. (1987). Escherichia coil and Salmonella typhimurium: cellular and molecular biology, neidhardt, F.C., ed. (Washington DC, USA: American Society for Microbiology), pp. 768-796
  17. Hudson, E.N., and Weber, G. (1973). Synthesis and characterization of two fluorescent sulfhydryl reagents. Biochemistry 12, 154-4161
  18. Iida, A., Groarke, J.M., Park, S., Thom, J., Zabicky, J.H., Hazelbauer, G.L., and Randall, L.L. (1985). A signal sequence mutant defective in export of ribose-binding protein and a corresponding pseudorevertant isolated without imposed selection. EMBO J. 4, 1875-1880
  19. Jeganathan, S., von Bergen, M., Brutlach, H., Steinhoff, H.-J., and Mandelkow, E. (2006). Global hairpin folding of tau in solution. Biochemistry 45, 2283-2293 https://doi.org/10.1021/bi0521543
  20. Koch, H.G., Hengelage, T., Neumann-Haefelin, C., MacFarlane, J., Hoffschulte, H.K., Schimz, K.L., Mechler, B., and M$\ddot{u}$ller, M. (1999) f$\aa$= $\hat{i}$$\acute{a}$$\acute{i}$$\hat{e}$$\zeta$ studies with purified components reveal signal recognition particle (SRP) and two independent protein-targeting pathways of Escherichia coil. Mol. Biol. Cell 10 2163-2173 https://doi.org/10.1091/mbc.10.7.2163
  21. Lentzen, G., Dobberstein, B., and Wintermeyer, W. (1994). Formation of SRP-like particle induces a conformational change in E. coli 4.5S RNA. FEBS Lett. 348, 233-238 https://doi.org/10.1016/0014-5793(94)00599-0
  22. Martin, J., Langer, T., Boteva, R., Schramel, A., Horwich, A.L., and Hartl, F.U. (1991). Chaperonin-mediated protein folding at the surface of groEL through a 'molten globule'-like intermediate. Nature 352, 36-42 https://doi.org/10.1038/352036a0
  23. Miller, J.D., Bernstein, H.D., and Walter, P. (1994). Interaction of E. coil Ffh/4.5S ribonucleoprotein and FtsY mimics that of mammalian signal recognition particle and its receptor. Nature 367, 657-659 https://doi.org/10.1038/367657a0
  24. Neumann-Haefelin, C., Sch$\ddot{a}$fer, U., M$\ddot{u}$ller, M., and Koch, H.G. (2000). SRP-dependent co-translational targeting and SecAdependent translocation analyzed as individual steps in the export of a bacterial protein. EMBO J. 19, 6419-6426 https://doi.org/10.1093/emboj/19.23.6419
  25. Patel, S., and Austen, B.M. (1996). Substitution of fifty four homologue (Ffh) in Escherichia coli with the mammalian 54-kDa protein of signal-recognition particle. Eur. J. Biochem. 238, 760-768 https://doi.org/10.1111/j.1432-1033.1996.0760w.x
  26. Qi, H.Y., and Bernstein, H.D. (1999). SecA is required for the insertion of inner membrane proteins targeted by the Escherichia coli signal recognition particle. J. Biol. Chem. 274, 8993-8997 https://doi.org/10.1074/jbc.274.13.8993
  27. Rapoport, T.A., Jungnickel, B., and Kutay, U. (1996). Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes. Annu. Rev. Biochem. 65, 271-303 https://doi.org/10.1146/annurev.bi.65.070196.001415
  28. Sack, J.S., Sapor, M.A., and Quiocho, F.A. (1989). Periplasmic binding protein structure and function: Refined X-ray structures of the leucine/isoleucine/valine-binding protein and its complex with leucine. J. Mol. Biol. 206, 171-191 https://doi.org/10.1016/0022-2836(89)90531-7
  29. Scotti, P.A., Valent, Q.A., Manting, E.H., Urbanus, M.L., Driessen, A.J.M., Oudega, B., and Luirink, J. (1999). SecA is not required for signal recognition particle-mediated targeting and initial membrane insertion of a nascent inner membrane protein. J. Biol. Chem. 274, 29883-29888 https://doi.org/10.1074/jbc.274.42.29883
  30. Subbarao, N.K., and MacDonald, R.C. (1993). Experimental method to correct fluorescence intensities for the inner filter effect. Analyst 118, 913-916 https://doi.org/10.1039/an9931800913
  31. Valent, Q.A., Scotti, P.A., High, S., de Gier, J.W., von Heijne, G., Lentzen, G., Wintermeyer, W., Oudega, B., and Luirink, J. (1998). The Escherichia coli SRP and SecB targeting pathways converge at the translocon. EMBO J. 17, 2504-2512 https://doi.org/10.1093/emboj/17.9.2504
  32. Yi, G.S., Choi, B.S., and Kim, H. (1994). Structures of wild-type and mutant signal sequences of Escherichia coli ribose binding protein. Biophys. J. 66, 1604-1611 https://doi.org/10.1016/S0006-3495(94)80952-X
  33. Zheng, N., and Gierasch, L.M. (1997). Domain interactions in E. coli SRP: stabilization of M domain by RNA is required for effective signal sequence modulation of NG domain. Mol. Cell 1, 79-87 https://doi.org/10.1016/S1097-2765(00)80009-X

Cited by

  1. Component interactions, regulation and mechanisms of chloroplast signal recognition particle-dependent protein transport vol.89, pp.12, 2009, https://doi.org/10.1016/j.ejcb.2010.06.020